
DOCUMENTATION

The Implementation of a Trustworthy
Voting System in MINIX 3

August 2010

Author:
Victor van der Veen

Contents

1 Introduction 2

2 Setup & Installation 2

3 SVN Trunk 3
3.1 Headers & Objects . 3

3.1.1 /lib/const.h . 3
3.1.2 /lib/type.h . 4
3.1.3 /lib/util.* . 5
3.1.4 /lib/cdrom.* . 6

3.2 Step 1: Precinct Master Key Generation and Distribution 6
3.3 Step 2: Voter Registration . 7
3.4 Step 3: Proof of Registration Mailed to the Voters 7
3.5 Step 4: Voting Machines are Prepared 7
3.6 Step 5: Key Assembly at Each Precinct 8
3.7 Step 6: Voters Show up and Check in 8
3.8 Step 7 & 8: Voters Cast Their Votes and Tabulating the Votes . . . 8

3.8.1 EML Notation . 9
3.9 Step 9: Publishing the Result . 9
3.10 Utils . 10

4 CD-R Implementation 10
4.1 Why porting is not sufficient . 11
4.2 Actual Implementation . 12

4.2.1 Packet Writing . 12
4.2.2 Random Write Access & Recovery 13
4.2.3 Recovery . 13
4.2.4 Command List . 14

4.3 Over 10.000 Votes on One Disc? 16
4.4 Issues during Implementation . 17

4.4.1 Prepare Issue (solved) 17
4.4.2 Time-out Issue (solved) 18
4.4.3 Large Write Buffer Issue (unsolved) 19
4.4.4 Strange read() Behavior (unsolved) 19

4.5 Future Work on CD-R Support for MINIX 3 20

5 Future Work 20

1

1 Introduction

This document describes the implementation of a trustworthy voting system in
MINIX 3. The Computer Systems group of the Vrije Universiteit Amsterdam ini-
tiated an “Individual Programming Assignment”, which target was to provide a
prototype voting system implementation based on the design of Paul and Tanen-
baum [1]. This documentation and the source trunk are the final results of this
assignment.

As outlined in [1], a significant part of the voting system consists of the ability
to attest the machine. The implementation below does not concern attestation. Due
to the amount of work it would take to implement this, attestation was set up as a
different project.

This document has the following structure. Section 2 outlines which hardware
and software setup was used for development. The contents of the source trunk is
explained in Section 3. Section 4 describes the new CD-R driver. Finally, Section 5
enumerates notes about what should be done in the future to gain a fully operational
voting machine.

2 Setup & Installation

To implement attestation in MINIX 3, the voting machine requires a Trusted Plat-
form Module (TPM) chip that supports TPM specification 1.2

For development, we used the latest MINIX version available, version 3.1.5,
when the project started. During development, newer versions were released. Ex-
cept for the CD-R driver, the voting system source should compile perfectly under
these releases.

To compile the source, it is necessary to install the following packages. Note
that to avoid dependency problems, the order of installation is important.

1. glib-1.2.10 (37)
2. binutils-2.16.1 (13)
3. make-3.80 (66)
4. gcc-libs (33)
5. gcc-4.1.1 (32)
6. openssl-0.9.8a (83)
7. subversion-1.4.0 (111)

After installing the above packages, it is necessary to add the gcc directory (/usr
/gnu/bin) to your path in ~/.ashrc. Downloading and compiling the voting
system source code is now possible:

1. svn checkout svn://svn.few.vu.nl/home/vvn200/voting/

2. cd voting/current/minix/

3. sh update.sh

4. cd /usr/src/tools/

2

5. make install

6. (reboot)
7. cd voting/current/

8. make all

Steps 2 to 6 add CD-R support to MINIX. Since this simply copies and altered
MINIX 3.1.5 device driver to the MINIX source trunk, followed by recompling
the system, this only works when MINIX 3.1.5 is used. If one wants to add
CD-R support to newer MINIX releases, it is necessary to check whether files
in voting/current/minix need to be updated.

Disable CD-R and LP Support CD-R and LP (print) support may be disabled
by modifying the Makefiles. More information about how this is achieved, can be
found in the corresponding README files.

3 SVN Trunk

Now that we have added CD write support and compiled the SVN source in Section
2, this section together with Section 4 contains the actual source code documen-
tation. This documentation along with the source comments should give a good
overview of how the system is implemented.

3.1 Headers & Objects

We start with the /lib directory. These files are included by most steps of this
implementation and are therefore rather important.

3.1.1 /lib/const.h

The const.h file contains a list of definitions which are used by a large part of the
implementation.

Encrypt and Decrypt Constants According to [1], we adhere to the PKCS#1
standard. A public/private keypair is used to encrypt/decrypt a shared session key
for data encryption. OpenSSL provides a library called “OpenSSL cryptographic
library” [2], which is what we used to adhere to this standard. We used the .PEM

file format to store public/private keypairs, which were read using the OpenSSL
crypto functions PEM read PUBKEY() and PEM read PrivateKey(). Data was
encrypted and decrypted using OpenSSL’s “high-level cryptographic functions”
[3].

The CIPHER constant in const.h tells which symmetric encryption scheme
is used. We currently use the standard DES-EDE3-CBC cipher as provided by
OpenSSL. Depending on the chosen cipher type, an initialization vector is needed
to encrypt/decrypt the first data block. Since our implementation uses a static buffer

3

to store this initialization vector (IV), the length of IV is defined in IV SIZE. This
should match EVP CIPHER iv length(CIPHER). If a different encryption cipher
is wanted, required actions include updating these two definitions, recompiling,
and restarting registration.

KEY SIZE BITS is the size of the asymmetric public key in bits, KEY SIZE

is the public key size in bytes. These values are needed so that the buffer for the
encrypted secret key can be declared static as well. An encrypted secret key (eskey)
is the shared symmetric key mentioned above, being encrypted by an asymmetric
public key. The value of KEY SIZE should match EVP PKEY size(crypto.pub-

key[0]). Here, crypto is a struct (defined in type.h) and crypto.pubkey is an
array of pointers to EVP PKEY types, which is the OpenSSL type for a public key.
In short: the encrypted secret key used for symmetric data encryption/decryption
will never be larger than the size of the used asymmetric key.

The algorithm that we use for creating digital signatures and hashes are de-
fined by SIGN DIGEST TYPE and DIGEST TYPE respectively. These are currently
both set to SHA256. SIGN DIGEST SIZE and DIGEST SIZE tell us how long (i.e.
how many bytes) a signature or hash will be. What follows are two import defini-
tions regarding the security level of the voting machine. First comes the salt size
(SALT SIZE) that tells us how many bytes will be added to a hashed user password
before it is encrypted. This mechanism protects the password against brute force
attacks. We currently set SALT SIZE to 256− DIGEST SIZE bytes. Next comes
S SIZE, which defines the number of bytes that will be used for the generation of
S1, S2 and S, currently set to 256 bytes.

File Locations Constants These are likely to change or disappear in future im-
plementations. For now, they are defined in such a way that they can be used within
s(n)printf() statements. The sprintf(filename,P PUBKEY LOC(42)) call will
write the location of the public key for precinct 42 into the string filename.

Database Prefixes Most (intermediate) data files are stored as plain text. Values
are written to files using simple fprintf() statements:

fprintf(fp,"%s%d\n",PREFIX_DB_VID,voter->vid);

When data must be read again, fgets() can be used to read one entire line of
data, followed by strncmp() to find out which data was fetched.

Remaining Definitions The remaining definitions are described in const.h.

3.1.2 /lib/type.h

Three main types are defined in type.h: crypt t, voter t and session t. The
crypt type consists of OpenSSL types to store keys (private, public and encrypted

4

secret) as well as encrypted and decrypted buffers (dbuf and ebuf) and their corre-
sponding counters (dbuf len and ebuf len). The crypt t struct is used by most
steps below to avoid numerous variable declarations.

A voter type is used to store data about a specific voter. Besides personal
information like name, address and password, this type also contains an array of
MAX RACES elements to store each vote of this voter. Once all votes are casted, this
array is used to write the voting record of this voter to disc.

The session type is used only in step 7 & 8 and holds data about the elec-
tion day. An important field is the ballot t ballot, which holds information
about the races and candidates as well as a counter for each candidate to be able to
print the final results quickly when election day ends. Other interesting fields are
blacklist (a list of voters who already logged in), the unique array and base.
The unique array contains every unique number that was created during election
day. A newly generated unique value is checked against this array to ensure its
uniqueness. The contents of base will be prepended to each unique value. By
using a different ‘base’ value for each voting machine, we avoid interfering unique
values between two different voting machines. Adding the time of boot completion
to this base value will avoid duplicates on the same machine after a system crash.

3.1.3 /lib/util.*

The most important parts of this project are those where user input must be parsed
and stored in a buffer. This is where buffer overflow exploits can occur. A signif-
icant part of util.c consists of functions that parse user input. To simplify user
input and avoid buffer overflow exploits, we have built a simple getch() function
which may be used by higher level functions when user input is requested. Our
getch() implementation does no more than the following:

• Change the terminal attributes using tcsetattr() in such a way that (1)
input is immediately available (i.e. no line-delimiter character is needed,
this is also known as non-canonical mode); (2) no characters are printed to
the screen; and (3) INTR, QUIT, SUSP, or DSUSP are discarded.

• Read one byte from standard input using fread().

• Reset the terminal settings to its defaults.

Hence, functions that use getch() need to do their printing and/or deleting of
characters manually. Note that this is a more accurate approach than the stan-
dard getchar() implementation [4]. Currently, getint(), getstring() and
getoption() are functions that use getch() to get their user input. getint(),
for example, is implemented such that only an integer value may inserted that lies
between two pre-known bounds.

Other functions in util.c concern the gathering of public/private keys from
a .PEM file (get public(), get private()), parsing plain-text data files (seek

5

vid(), parse nextline *()), basic cryptography functionality (hash(), sign(),
simple decrypt()), and other minor functions.

Encrypted, signed or hashed data is written to a file as a hexadecimal bytestring
(etoh() — encrypted to hexadecimal). This gives more flexibility when reading
the encrypted data in a later stage and makes our files text-only (handy for testing).
Note that the crypto library provides similar functionality with ‘BIOs’, but we
opted for this approach for simplicity [5].

3.1.4 /lib/cdrom.*

The CD-R initialization and finalization steps are implemented in cdrom.c. The
initialization procedure consists of a while loop that loops until a blank CD-R is in-
serted into the tray. Any media other than CD-R is discarded, making it impossible
to use media types that allow the removal of written data. Once a CD-R is inserted,
the drive is locked and it is set for packet writing. Initialization also performs a
DIOCRESERVE ioctl on the inserted disc to reserve two large tracks for data storage
and one small track for error recovery.

Finalization is more straightforward: close all tracks and finalize the disc be-
fore unlocking and ejecting it.

Besides start-up and shutdown procedures, cdrom.* also contains code that
writes data to a track. The cdrom write() function expects a struct cd write

buffer (defined in /usr/src/include/minix/cdrom.h), which consists of a
16KB data buffer and an integer identifying which track should be used for writing
this data.

3.2 Step 1: Precinct Master Key Generation and Distribution

This step is an operational concerning the procedural generation and distribution
of precinct keys.

Besides the generation of a precinct key, [1] makes a note about the use of a
county key as well: “. . . It encrypts Si1 and Si2 with a county-generated public key
. . . ”. The creation of this key was not stated explicitly, however. We feel that step 1
would be a good place to do this, but one may argue that a separate step is required.

There are numerous ways to generate keys that contain a public and private
part. Our implementation assumes that RSA encryption is used and that the public
and private keys are stored in a .pem file. Since our implementation uses the crypto
library provided by the OpenSSL project, it makes sense to use OpenSSL for key
generation as well. An example of creating keys using OpenSSL is shown Listing
1.

The rest of step 1 is signing and secret sharing the multiple key parts (if de-
sired). These steps are omitted in our implementation.

6

Listing 1 Example OpenSSL calls for key generation

#Generate a 2048 bit county key using RSA:

openssl genrsa -out county.private.pem 2048

#Generate a public subkey of above key:

openssl rsa -in county.private.pem -pubout -out \

county.public.pem

#Generate a 2048 bit key using RSA for precint i:

openssl genrsa precinct_i.private.pem 2048

#Generate a public subkey of above key:

openssl rsa -in precinct_i.private.pem -pubout -out \

precinct_i.public.pem

3.3 Step 2: Voter Registration

Voters may now come to the county office to register themselves. Only registered
voters are allowed to cast their vote on election day. Their personal information is
stored in a database, voter.db (used in later steps). An example implementation
of this registration procedure can be found in register.c.

When looking at register.c, the first thing we see is an if-statement that
checks whether the initialization vector size IV SIZE stored in const.h equals
the expected initialization size. We saw this earlier in Section 3.1.1. If one decides
to use a different cipher by adjusting the CIPHER constant in const.h, it may be
necessary to update IV SIZE as well. If these numbers do not match, the pro-
gram behavior is undefined. Hence, it is important that this check is done in each
program that uses the crypt t type.

A few lines down in the code, right after loading the necessary .pem files, simi-
lar checks are done to make sure that const.h contains the correct key sizes. When
longer keys are generated in step 1, it is necessary to update the KEY SIZE BITS

value in const.h.

3.4 Step 3: Proof of Registration Mailed to the Voters

In this step, a proof of registration is mailed to the voters. Attached is the value of
Si1. The source in sends1.c searches for record i in voter.db and decrypts the
encrypted Si1 value using the county private key. This value is then converted to a
hexadecimal format and written to a file called i.s1.

3.5 Step 4: Voting Machines are Prepared

This step concerns the preparation of the voting machines. Voters registered them-
selves in step 2 by going to the county office. Hence, voter.db contains a list

7

of voters who will vote at a precinct within the county. votersperprecinct.c

contains the source code that splits the voter.db into each precinct’s list.
Once voter.db is split into multiple (decrypted) voter per precinct (VPPD)

files, these files are encrypted and stored in voter per precinct (VPPE) files, using
the precinct public key to prevent tampering in storage or transit.

3.6 Step 5: Key Assembly at Each Precinct

This step concerns assembling the keys at each precinct. Since we assumed in step
1 that no key splitting techniques are used, this step does not contain any relevant
procedures.

3.7 Step 6: Voters Show up and Check in

In Step 6, voters go to the polling place to vote. Before voting, he must check
in by going to a poll worker and provide the poll worker with Si1. An example
implementation of the check-in software running at the poll worker machine can
be found in checkin.c.

This program decrypts the VPPE for a provided precinct, asks for a voter-
id, looks up the voter, prints his personal information on the screen, asks for a
confirmation, gets Si2, computes S = Si1 XOR Si2 and creates a token file which
contains the voter-id and S.

3.8 Step 7 & 8: Voters Cast Their Votes and Tabulating the Votes

Step 7 and step 8 are merged in the implementation. This is because step 8 is a
procedural step of shutting down the voting machines.

We implement only a subset of the authentication interface between the voter
and the machine. In the normal case, a voter was given a smartcard during the
check in procedure that contains his token as described in section 3.7. This smart-
card would be inserted into the voting machine so that the machine can authenticate
the voter before it starts the voting procedure. In our implementation, the token that
is needed for authentication is not fetched from a smartcard, but read from a file.
The voting machine code makes simplifying assumptions on where previously en-
tered data can be found. For example, the token described here is assumed to be in
a file called token in the current data directory. Notes about where the voting
machine expects these files can be found in the code itself. They are also printed
on screen when the machine is started.

vm.c contains the initialization, finalization and main loop of the voting ma-
chine implementation. A significant part of initialization and finalization concern
the setting up of the CD-ROM device for packet writing. Section 4 provides
more information about how this was achieved. Beside device initialization, the
init session() also fetches a candidate list by parsing a EML file. See Section
3.8.1 for its corresponding BNF notation.

8

The task of the main loop is easy: wait for input from the user and start the
attestation or voting procedure. If a special key is pressed, the exit procedure is
called.

The voting procedure itself consists of 12 substeps of which descriptions can
be found in the comments of vm.c.

3.8.1 EML Notation

During initialization, the voting software parses a XML file to fetch the candidate
list. The file is parsed by the BNF notation shown in Listing 2.

Listing 2 BNF notation of accepted EML input

LF = <US-ASCII LF, linefeed (10)>

SP = <US-ASCII SP, space (32)>

HT = <US-ASCII HT, horizontal-tab (9)>

DQ = <US-ASCII double-quote mark (34)>

WS = *(LF | SP | HT)

LWS = *(SP | HT)

UPALPHA = <any US-ASCII uppercase letter "A".."Z">

LOALPHA = <any US-ASCII lowercase letter "a".."z">

ALPHA = UPALPHA | LOALPHA

DIGIT = <any US-ASCII digit "0".."9">

CHAR = ALPHA | DIGIT | SP

QSTRING = (DQ *CHAR DQ)

name_attribute = (LWS "name" LWS "=" LWS QSTRING LWS)

candidate = (WS "<candidate>" *CHAR "</candidate>" WS)

race = (WS "<race" [name_attribute] ">" *candidate "</race>" WS)

ballot = (WS "<ballot>" *race "</ballot>")

The used notation is meant to be a subset of the Election Markup Language
(EML) [6]. To keep our codebase small, we do not need to support the entire EML
specification (see parser.c).

3.9 Step 9: Publishing the Result

Before the election results can be published, it may be necessary to recount the
votes that were entered earlier. This is done by reading all vote records from disc

9

and verifying them, which is implemented in getresults.c. We experienced
some problems in MINIX when doing this (see Section 4.4.4), so this program can
currently only be used in a Linux environment.

The principle of getresults.c is fairly simple: just reverse everything that
we did so far. The encrypted voting records on disc are fetched by simple fread()
and fseek() calls. These records are then decrypted using the precinct private
key. Next, each subrecord (containing the vote for one race) will be parsed and its
signature will be verified. When the signature check passes, the vote is stored in
memory and the next subrecord is parsed.

When all votes are read, a result screen is printed to standard output.

3.10 Utils

We used a single CD-RW disc for our CD-R test purposes. A CD-RW has the same
properties as a plain CD-R disc, with the advantage that it can be erased after every
write session. However, there was no blanking program for CD-RW implemented
on MINIX 3 yet, which is why we included one in the utils directory.

The utility program uses a new ioctl, DIOCBLANK, which performs a ‘quick’
blanking operation on the requested disc. More information about blanking types
can be found in the “Blanking Command” section of MMC-6 [7].

4 CD-R Implementation

As outlined in [1], a write-once, read-many medium is specified to store votes, and
they recommend a CD-ROM as a medium to achieve this. The main problem for
an implementation is that MINIX 3 does not support CD-R. In this section, we
describe how a CD-R driver for MINIX 3 can be implemented.

The driver will be responsible for sending commands to the device as well as
receiving data from it. Possible commands are defined in the Multi-Media Com-
mand - 6 (MMC-6) document. This is a standard that defines a SCSI based com-
mand set needed to access multi-media features [7]. More commands are defined
in the SCSI Primary Commands - 3 (SPC-3) document. This standard defines the
SCSI commands that are basic to every device model and the SCSI commands that
may apply to any device model [8].

Most CD drives nowadays are ATAPI devices. ATAPI allows the ATA interface
to carry SCSI commands and responses. To issue a command, the driver has to
construct an ATAPI packet containing the desired SCSI command from MMC-6 or
SPC-3. This packet is then sent over the ATA interface to the device. Depending
on the command and its arguments, the device sends back a response (sense data)
and waits for more requests [9]

Fortunately, MINIX 3 already supports sending ATAPI packets and receiving
responses: atapi sendpacket() and atapi intr wait in the general AT driver
(/usr/src/drivers/at wini/at wini.c) implement this functionality.

10

For more information about the physical structure of a CD-ROM, Philips’ Red
Book would be the best reference. Regrettably, this book is rather expensive, and
a confidentiality agreement is required to get it. An ‘approximation’ of the Red
Book is the international standard published by the International Electrotechnical
Commission (IEC) as IEC 60908. Much of the information from the IEC 60908 is
repeated in the freely available ECMA-130 CD-ROM specification [10, 11].

Below, we first explain why we can’t simply port existing burning software to
MINIX 3. Next, notes about the actual implementation can be found, followed by
difficulties that occurred during implementation and some ideas for future work on
MINIX 3.

4.1 Why porting is not sufficient

To add CD-R support to MINIX, one could choose to port an existing implementa-
tion or to write a new implementation from scratch. We now describe why porting
is not sufficient:

1. Current implementation architectures significantly differ from that of MINIX
3.

2. Current implementations do not support our requirements.

First, focusing on the MINIX 3 ideology, we see that current *NIX burning soft-
ware products rely on direct write access to the CD drive [12, 13]. This means that
the SCSI commands for manipulating the device are sent to it directly by writing
bytes to /dev/cdrom. Such direct communication between regular user programs
and hardware brings some security risks. For example, it is possible to send a
blocking command to the device which can make all other running processes (web
server, database server, . . .) become unresponsive. As MINIX 3 aims to be a secure
and reliable operating system, using direct write access to /dev/cdrom violates
the MINIX 3 design goals.

Second, existing burning software does not support our requirements. Below
are the three main reasons why current implementations are problematic.

We need the ability to write more than 99 data chunks on one disc We see
that most burning software is able to write data to a disc only in Track-At-Once
(TAO), Session-At-Once (SAO) or Disc-At-Once (DAO) write mode. In TAO
mode, the device expects data to arrive in a contiguous flow, possibly by using
the device’s internal buffer. When the flow is non-contiguous or when the buffer
becomes empty, a buffer underrun occurs. Most devices have a buffer underrun
protection mechanism which allows restarting the writing procedure after a buffer
underrun occurred. However, although this is not stated by the MMC explicitly, our
experiments showed that when a buffer underrun occurred, the current write track
i is closed by the device. Once data becomes available again, the device creates a
new track i+1 and starts writing to this new track.

11

The fact that a disc may consist of at most 99 tracks [9], implies that TAO mode
is not sufficient since it limits the number of votes that can be stored on one disc to
99. SAO or DAO are also not sufficient, since their finest granularity is at least one
track[14]. One could think of another scheme in which TAO write mode may be
sufficient: not writing the votes to disc immediately, but storing them in memory
first and writing them all at once when the election day ended. This would require
only one track which can be written in TAO mode. In this scheme, a system crash
or power loss destroys all entered votes up to that point in time. Variants of this
scheme wherein x votes (for x > 1) are written to disc directly, suffer from the same
vote loss possibility.

The solution lies in packet writing. This technique is also known as incremen-
tal writing and is mainly used by UDF like file systems to let CD-RW discs act
like regular floppy discs. Unfortunately, we were unable to find any open source
software products that provide such flexibility.

We need the ability to write votes to a “random” location This is another
requirement of the design. No current implemenation exists that supports this.
Because of this specific requirement, a custom implementation is needed.

We need the ability to recover an unfinished disc after a system crash This
requirement is not defined by Paul and Tanenbaum. However, a disc failure could
lose all previously unfinished votes. As with our search for drivers that support
CD-R random write access, this feature may even be a more specific objective.
Hence, we can safely state that current implementations are not sufficient and that
we need a CD-R driver that is written from scratch to support our requirements.

4.2 Actual Implementation

In this section, we examine the actual implementation of the new CD-R driver for
MINIX 3.

4.2.1 Packet Writing

Setting up a CD drive for packet writing (a.k.a. incremental writing) requires simi-
lar steps as setting it up for TAO mode. A good overview of how to write data to a
disc in TAO mode can be found in the TAO Multi-Session CD Cookbook [15]. Set-
ting the device for packet writing, writing data to it and closing the disc concerns
the following commands (from MMC-6):

1. (optional) Set the drive write speed using CD SET SPEED.
2. Set up a Write Parameters mode page and send it to the device using MODE

SELECT.
3. Use READ TRACK INFORMATION to locate the next writable address (NWA).
4. Write data to the media using WRITE.

12

5. (optional) Loop back to 3 to write more data.
6. Finalize the track using CLOSE TRACK SESSION.
7. Finalize the disc using CLOSE TRACK SESSION.

The important step here is sending the Write Parameters mode page. By setting
the Write Type field of the mode page to 0x00, the device shall perform Pack-
et/Incremental writing when WRITE commands are issued. We also set FP to 1 and
Packet Size to 0x08 to use a fixed packet size of 8 sectors for each write.

One could choose to use variable packets instead of fixed size packets. How-
ever, by using variable packets, it is no longer possible to use the READ TRACK

INFORMATION command to locate the NWA. This is because when variable packet
sizes are used, the device cannot keep track of the sectors used for overhead, since
it does not know the size of the previously written packet. Using variable packets
thus forces us to manually calculate the NWA for each WRITE. This is feasible, but
fixed-size vote records yields a simpler implementation.

To read a burned disc, we close the track and disc as our last two steps. Unfi-
nalized discs do not have a valid TOC and such discs cannot be properly accessed
by other devices.

For a discussion about fixed packets versus variable packets, see issue subject
6-3 of [14]. Issue [7] for details of the Command Descriptor Blocks (CDBs) used
for each command.

4.2.2 Random Write Access & Recovery

We can now write data to a disc in packet mode, which allows us to write many
data chunks to a single track. We do not have the ability to write data to a random
location. To achieve random writes, we use the RESERVE TRACK previous to the
first write sequence. By writing some information to the lead-in of the disc, this
command is able to reserve a number of blocks for a track. After reservation of
x sectors for the first track, it is possible to write to sector 0 (track 1) or to sector
x+1 (track 2). This allows us to successfully implement random write access: we
reserve two tracks during initialization and, for each vote, the TPM chip generates
a random number between 0 and 1. Depending on this value, we append the vote
to track 1 or 2. If necessary, more tracks could be reserved to increase randomness.

4.2.3 Recovery

The RESERVE TRACK commands are helpful for recovery. For example, consider
when vote i is written to disc correctly, but the system crashes before vote i+ 1
is written. A crash will ultimately result in a reboot of the machine, resetting the
device’s buffer and causing information about where data on the disc can be found
to be lost. This data would have been written to disc during the CLOSE TRACK

SESSION commands. Now, we are unable to get vote i from disc, although we are
sure that it is somewhere on it.

13

Since the RESERVE TRACK command needs to write some information to the
disc about the ending of the previous track, we can use this command to implement
a recovery function: by reserving i tracks, ejecting the disc without finalizing it
(simulating a system crash), inserting it and finalizing tracks 1 . . .(i−1) as well as
the disc itself using the CLOSE TRACK SESSION command, we are able to read up
to i−1 tracks. Thus, by simply reserving an extra, empty track, we can assure that
written data to any previous track can still be accessed after a power outage.

Using the above technique, it is possible to add a check for recovery()

function to the initialization procedure of the voting machine software. Here, we
can test whether an inserted disc is empty, and, if not, we may try to finalize it using
CLOSE TRACK SESSION commands. If the disc was from an unfinished previous
session, we ensure that all votes can be read from this disc in a later stage.

One could think of other situations that may cause trouble:

• A crash during finalization (CLOSE TRACK SESSION) (at the end of the elec-
tion day or during recovery) may result in broken lead-in/lead-out areas,
causing the entire disc to be corrupted.

• A crash during the vote-writing procedure (WRITE) may corrupt the vote that
is currently being written. The worst that can happen here is recovery failing
as well, resulting in an unreadable disc.

Note that crashes during the initialization procedure are negligible: without previ-
ously entered votes, no votes can be lost. If we print paper ballots before votes are
written to disc, no votes are lost in the latter scenario.

Unfortunately, CD-ROM media are likely to become corrupt. They are vulner-
able to scratches and direct sunlight. Even when special care is taken to address
these issues, some CD-R discs have bad sectors immediately after the burning pro-
cedure. However, the design states that the paper ballots are the actual votes, not
those that are stored on CD-R. Thus, CD-R recovery is a nice feature to have but
ultimately unnecessary.

4.2.4 Command List

Since the current ATAPI implementation of MINIX 3 can be found in /usr/src

/drivers/at wini/at wini.c, we added our CD-R driver code to at wini.c.
Beside the core functions described before, some more useful commands were

implemented. A list of all newly implemented commands and their uses can be
found below. Note that most commands are able to execute different subcom-
mands by adjusting their CDB. Below, only the commands that were used in our
implementation are shown.

• REQUEST SENSE in request sense().
This is a SPC-3 command which forces the drive to provide sense data on the
previous command. Although there already existed a sense request() in
at wini.c, this new function uses a struct defined in /usr/src/include

14

/minix/cdrom.h to store sense data. This function may be used in future
implementations to give a user program detailed information about what hap-
pened after a command was issued.

• START STOP UNIT in start stop unit().
This command is used to eject media.

• TEST UNIT READY in test unit read().
This command is used to test whether media is inserted and the drive is
ready to process commands. By issuing a REQUEST SENSE after TEST UNIT

READY, the sense key can be read to find out what state the device is in.
• PREVENT ALLOW MEDIUM REMOVAL in prevent allow medium removal().

This command is used to lock and unlock inserted media.
• GET CONFIGURATION in get configuration().

This command is used to get the device’s configuration. This allows us to
check which type of disc is inserted (CD-R, CD-RW, DVD, . . .) and also
shows us the capabilities of the device (can only read CD, can read CD/DVD
and write CD-R, . . .).

• SET CD SPEED in set cd speed().
This command tries to set the read and/or write speed of the device.

• MODE SENSE in mode sense().
This command is used to read the Write Parameters mode page of the drive.
This is currently only used to determine the page length which we need for
MODE SELECT.

• MODE SELECT in mode select().
This command is used to update the Write Parameters mode page of the
drive.

• RESERVE TRACK in reserve track().
This command is used to reserve a track of a specific size.

• READ DISC INFORMATION in read disc information().
This command is used to get disc information of the inserted disc. The re-
turned data is stored in a struct that is defined in /usr/src/include/minix
/cdrom.h. We use it to determine whether a disc is really empty and not
erasable.

• READ TRACK INFORMATION in read track information().
This command is used to get information of a specific track on the inserted
disc. The returned data is stored in a struct that is defined in /usr/src

/include/minix/cdrom.h. We use it to determine the next writable ad-
dress of a track.

• WRITE in cd write().
This command performs the actual write command and writes data to the
disc.

• CLOSE TRACK SESSION in close track session().
This command closes a track or disc.

• BLANK in blank().
This command blanks a CD-RW in fast blank mode.

15

After issuing the selected command, each function described above does a
request sense(). The sense data that is returned will be stored in a sense struct
which must have been provided by the caller.

Since the goal of this project was not to implement a steady CD-R driver, but
implementing a voting machine, the return values of above functions are not explic-
itly defined. At this moment, above functions return one of the following values:

• -3: There was an error in the parameter list.
• -2: The driver was unable to send the ATAPI packet to the device, or I/O

(sys insw() or sys outsw()) failed. Maybe the drive was busy.
• -1: The device reports an error. Examine the sense data for more details.
• OK: The device reports no error. Examine the sense data for more details.

To allow user processes to execute these commands, disc ioctl codes were
added to /usr/src/include/sys/ioc disk.h and w other() in at wini.c

was updated. A list of new ioctls that a user can call after installing the new
at wini driver can be found below.

• DIOCLOCK and DIOCUNLOCK lock and unlock the drive.
• DIOCEJECT opens the tray (if any) and ejects the disc.
• DIOCBLANK blanks the inserted disc, if possible.
• DIOCREADY returns 1 if the device is ready, 0 if not.
• DIOCISBLANKCDR returns 1 if the device contains a blank CD-R, 0 if not.

For this, get configuration() is called to get the current profile of the
drive. If this is not CD-R, 0 is returned. If the current profile is CD-R,
read disc information() is called and the returned struct is inspected to
ensure that the inserted media is blank and not erasable.

• DIOCSETSPEED tries to set the read and write speed of the device to its max-
imum.

• DIOCMODESELECT sets up the device for packet writing with a fixed packet
size of 8 sectors (16 KB).

• DIOCRESERVE reserves 3 logical tracks on the current disc. Two tracks of
100 MB and a smaller third track of 1 MB.

• DIOCWRITE expects a struct cd write param contains user data and a track
number and writes this data to the requested track.

• DIOCCLOSE closes the three logical tracks followed by closing the entire
disc.

4.3 Over 10.000 Votes on One Disc?

We now examine how many votes we can store on a single disc. We saw in previous
subsections that three tracks will be reserved. Two equally big ones for data storage
and a smaller one for recovery functionality. Given the characteristics of optical
disc media, it is impossible to resume writing at the exact same spot on the disc as
we left it before. This means that a certain amount of overhead is inevitable, which

16

causes a delta between the actual size of a track (i.e., user space) and its reservation
size.

If a fixed packet size is used, it is possible to compute the overhead beforehand.
[7] states that each written packet will take up an extra of 7 sectors for run-in, run-
out and link purposes. This gives us two functions. The first allows in calculation
of the available user space depending on the chosen packet size and reservation
size. The second one can tell us how many sectors we should reserve, given a
packet size and the amount of user space that is desired.

ActualSize = (PacketSize+7)
ReservationSize

PacketSize
−5

ReservationSize = (ActualSize+5)
PacketSize

PacketSize+7
In the above, ActualSize, ReservationSize and PacketSize are measured in sectors
(1 sector = 2048 bytes).

A single track must consist of at least 300 sectors. Using a 700MB disc, which
contains 360.000 sectors, our actual size for each data track is now limited to
360.000−300

2 = 179.850. We round this value to 179.000 to conservatively avoid
errors.

Naturally, a larger packet size reduces the overhead and provides more actual
available user space. Unfortunately, larger packet sizes also result in less available
packets, which narrows the available number of votes that can be stored on a disc.
This is shown in figure 1.

Notice that we cannot permit a packet to contain multiple votes, since each vote
must be written to disc directly after it was casted. Writing only a half packet is
not possible. Waiting for another vote to fill a packet is not desired, since a crash
can destroy the first vote.

Although we can divide a vote over multiple packets, each vote will be the
approximate same size. This forces every vote to be divided over multiple packets.
To avoid packet storage overhead, it is better to increase the packet size. We choose
a packet size where each vote can fit in a single packet. Hence, the number of
packets limits the number of available votes.

A packet size of 8 or 16 blocks, allowing 16KB or 32KB per vote respectively,
will limit the number of votes to around 10.000. This is sufficient for any type of
election.

4.4 Issues during Implementation

Below, we outline the interesting issues that future MINIX 3 developers may find
useful.

4.4.1 Prepare Issue (solved)

We experienced some strange behavior during tests of a first version of the driver.
We tested a program that first ejected the tray, followed by waiting for a blank

17

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128 256
0

2500

5000

7500

10000

12500

15000

A
va

ila
bl

e
us

er
sp

ac
e

(M
B

)

A
va

ila
bl

e
re

co
rd

s

Packet size (sectors)

User space sectors: 179005x
x+7

Packets: 179005
x+7

Figure 1: A larger packet size reduces the overhead (left y-axis), but also the num-
ber of available votes (right y-axis)

CD-RW to be inserted. sleep(1) was called between each TEST UNIT READY

command. We executed this program two times in a row. Strangely, the first itera-
tion worked perfectly fine, while the second timed out.

After some debugging, we found the issue in the w prepare() function in
at wini.c. Each time we wish to perform device I/O, we must call this func-
tion. If not — as we did — at wini accesses the device that was used during
previous hardware I/O. Somehow, between the first and second iteration of our
test program, another process accessed the hard disk after which our driver tried
to access the hard disk as well instead of the CD-ROM drive. Hence, by doing a
w prepare(m->DEVICE) before sending bytes to the device, this issue was solved.

4.4.2 Time-out Issue (solved)

Most implemented commands discussed earlier set the IMM field in their CDB to
0. This implies that the device does not return control to the operating system
as long as the requested command is not completed. Since closing a disc may
take some time, we needed to increase the WAKEUP SECS time-out value defined in
at wini.c from 30 seconds to 600 seconds, assuming that 5 minutes should be
long enough to close any disc at any speed.

When the IMM field is set to 1, one must issue TEST UNIT READY commands
periodically to determine completion of the current operation. Devices may pro-
vide detailed sense data to report a command’s completion percentage. Since
WRITE commands do not take a lot of time to complete and CLOSE TRACK SESSION

18

is supposed to be called once at the end of election day, adding this functionality
to our implementation provides little benefit.

4.4.3 Large Write Buffer Issue (unsolved)

The WRITE command allows us to send any number of bytes to the device. This
behavior is implemented in different steps. First, we send a ‘write request’ to the
device, telling it how many bytes we want to send, say s. The devices replies with
the number of bytes it is willing to accept at once, say n. We now write n bytes to
the device, after which we wait for a reply again. This is repeated as long as n < s.
The value of n is determined by the internal buffer size of the device. To burn
data at higher speeds, it is desired to use this buffer extensively and send large data
chunks, so that the overhead of processing WRITE CDBs is reduced to a minimum.

Unfortunately, we were unable to use data chunks larger than 8 blocks (16
KB). Although the sending of a WRITE CDB with LBA = 16 resulted in a ‘positive’
reply from the device, writing 16 KB of data to the device using the sys outsw()

function triggered a MINIX crash.
Debugging showed an issue with the rep 016 outs instruction in phys outsw()

(in /usr/src/kernel/i386/klib386.s). Adjusting phys outsw() so that only
one outw was executed, showed that the crash occurs when the outw instruction is
executed more than 8240 consecutive times.

To eliminate the chances of this crash being caused by faulty hardware, we
posted a “request for testing” on the MINIX 3 google group[16]. Unfortunately,
we got no replies. Hence, we cannot say anything about the origin of this problem.
Future MINIX 3 CD-R implementers need to take this behavior into consideration.

For this project, using a smaller buffer size is sufficient. However, since this
problem limits the maximum write speed of the device, write support for DVD or
Blu-Ray may be impossible to implement.

4.4.4 Strange read() Behavior (unsolved)

While implementing step 9, where data must be read from the written disc again,
we experienced some strange read() behavior in MINIX. Reading data from the
first track (lseek(cdrom fd,0,SEEK SET), followed by read() calls) were suc-
cessful. However, reading data from the second track failed. Running cdrskin

-toc under Linux showed that the second track was located at sector 96145. This
would require a lseek(cdrom fd,96145*2048,SEEK SET), followed by read()
calls to start reading data from this track. The data read, however, was not the data
that we expected. It seemed that we read from sector 96153 instead (the next
packet).

We did some more tests using the dd command which allow direct data copies
from CD-ROM to disk. We found that we needed to start reading from sector 96140
or 96138 to obtain the record that was supposedly located at sector 96145. Linux’

19

dd implementations showed no problems whatsoever, which is why we ported the
getresults.c program to Linux, using stream I/O.

More investigation into this issue is necessary.

4.5 Future Work on CD-R Support for MINIX 3

DVD read support and Blu-Ray read support are the next logical steps for MINIX
3 media support.

In addition to DVD-read support, needed abilities in the CD-write driver in-
clude writing discs in TAO, DAO, SAO or packet writing mode. One would have
to think about how to provide all the possible options (e.g., a MODE SELECT).
A solution may lie in the implementation of a new library which goal is to parse
CD-R requests from user space.

Future CD/DVD implementers should take into consideration that the current
implementation does not have DMA support.

5 Future Work

A few more things remain before the completion of a trustworthy voting system
implementation. One gap is the issue of machine attestation. Implementing attes-
tation requires knowledge of TPM programming and is outside the scope of this
work.

In addition to attestation, Step 7 & 8 needs two updates before deployment. By
adding bit blitting code to MINIX, simple bitmap images can be read and displayed
on the screen. Because bit blitting is fast and requires a small code base, it meets
our need for a simple voting machine GUI.

While the attestation and bit blitting are useful contributions, stripping down
unneeded voting machine functionality would contribute to a smaller code base
(and thus to reliability). Before stripping down MINIX, porting the current imple-
mentation to the latest version of MINIX 3 will incorporate new bugfixes. Except
for our modified at wini.c, which may require some minor adjustments before it
compiles on later releases, other source files should compile without any modifica-
tion.

Apart from the voting machine, more work may be done to extend the CD
driver. Up till this moment, there is no secure mechanism in any OS to write data
to CD’s. We saw in Section 4 that current *NIX based CD-R burning tools let
users interact with the hardware directly. This can lead to instable systems. A
different approach in where a new system layer is added that takes care of sending
commands to the device and retrieving replies may be an approach that is more
secure. This design could disallow users to send a CDB with the IMM bit set to 1,
ensuring continuation of other system processes.

In MINIX 3, this new layer would be an entirely new driver, probably heavily
based on and partially replacing the current at wini.c implementation. Future

20

source code that will support more optical disc features (DVD/Blu-Ray support)
should be placed outside at wini.c to avoid code bloat.

21

References

[1] Nathanael Paul and Andrew S. Tanenbaum. The design of a trustworthy vot-
ing system. Computer Security Applications Conference, Annual, 0:507–
517, 2009.

[2] OpenSSL Cryptographic Library.
http://www.openssl.org/docs/crypto/crypto.html.

[3] OpenSSL EVP Manpage.
http://www.openssl.org/docs/crypto/evp.html.

[4] Sean Barnum. GETC.
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/

746-BSI.html.

[5] OpenSSL BIO Manpage.
http://www.openssl.org/docs/crypto/bio.html.

[6] Organization for the Advancement of Structured Information Standards.
Election Markup Language (EML).
http://xml.coverpages.org/eml.html, 2008.

[7] Bill McFerrin. Multi-Media Commands - 6 (MMC-6), 2006.

[8] Ralph. O. Weber. SCSI Primary Commands - 3 (SPC-3), 2005.

[9] Dal Allan, Tom Hanan, and Devon Worrell. Information Specification for
ATA Packet Interface for CD-ROMs, 1996.

[10] Chip Chapin. Chip’s CD Media Resource Center: CD-DA (Digital Audio).
http://www.chipchapin.com/CDMedia/cdda1.php3, 2005.

[11] Ecma. Data interchange on read-only 120 mm optical data disks (CD-ROM),
1996.

[12] Jörg Schilling. CDRecord.
http://cdrecord.berlios.de.

[13] Thomas Schmitt. Cdrskin.
http://libburnia-project.org/.

[14] Andy McFadden. CD-Recordable FAQ.
http://www.cdrfaq.org/, 2010.

[15] Thomas Schmitt. Optical Media Rotisserie Recipes.
http://www.libburnia-project.org/browser/libburn/trunk/

doc/cookbook.txt, 2010.

22

http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/crypto/evp.html
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/746-BSI.html
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/746-BSI.html
http://www.openssl.org/docs/crypto/bio.html
http://xml.coverpages.org/eml.html
http://www.chipchapin.com/CDMedia/cdda1.php3
http://cdrecord.berlios.de
http://libburnia-project.org/
http://www.cdrfaq.org/
http://www.libburnia-project.org/browser/libburn/trunk/doc/cookbook.txt
http://www.libburnia-project.org/browser/libburn/trunk/doc/cookbook.txt

[16] Victor van der Veen. Request for cd-write testing.
http://groups.google.com/group/minix3/browse_thread/

thread/d911936ef8e16259/7f3a4a244a384e18#7f3a4a244a384e18,
April 2010.

23

http://groups.google.com/group/minix3/browse_thread/thread/d911936ef8e16259/7f3a4a244a384e18#7f3a4a244a384e18
http://groups.google.com/group/minix3/browse_thread/thread/d911936ef8e16259/7f3a4a244a384e18#7f3a4a244a384e18

	Introduction
	Setup & Installation
	SVN Trunk
	Headers & Objects
	/lib/const.h
	/lib/type.h
	/lib/util.*
	/lib/cdrom.*

	Step 1: Precinct Master Key Generation and Distribution
	Step 2: Voter Registration
	Step 3: Proof of Registration Mailed to the Voters
	Step 4: Voting Machines are Prepared
	Step 5: Key Assembly at Each Precinct
	Step 6: Voters Show up and Check in
	Step 7 & 8: Voters Cast Their Votes and Tabulating the Votes
	EML Notation

	Step 9: Publishing the Result
	Utils

	CD-R Implementation
	Why porting is not sufficient
	Actual Implementation
	Packet Writing
	Random Write Access & Recovery
	Recovery
	Command List

	Over 10.000 Votes on One Disc?
	Issues during Implementation
	Prepare Issue (solved)
	Time-out Issue (solved)
	Large Write Buffer Issue (unsolved)
	Strange read() Behavior (unsolved)

	Future Work on CD-R Support for MINIX 3

	Future Work

