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Abstract—The smartphone industry has been one of the
fastest growing technological areas in recent years. Naturally, the
considerable market share of the Android OS and the diversity
of app distribution channels besides the official Google Play
Store has attracted the attention of malware authors. To deal
with the increasing numbers of malicious Android apps in the
wild, malware analysts typically rely on analysis tools to extract
characteristic information about an app in an automated fashion.
While the importance of such tools has been addressed by the
research community [8], [25], [26], [28], the resulting prototypes
remain limited in terms of analysis capabilities and availability.

In this paper we present ANDRUBIS, a completely automated,
publicly available and comprehensive analysis system for Android
applications. ANDRUBIS combines static analysis techniques with
dynamic analysis on both Dalvik VM and system level, as well
as several stimulation techniques to increase code coverage.

I. INTRODUCTION

With a market share of almost 80% [18], Android is undoubt-
edly the most popular operating system for smartphones and
tablets, rivaled only by Apple’s iOS. Naturally, cyber criminals
are aware of this significant distribution. The fact that, unlike
iOS, Android allows installation of apps from arbitrary sources
without rooting the device first, is an additional incentive for
criminals to focus on subverting the supply of apps with
malicious code. Reports by antivirus (AV) companies back
the increasing interest in malware for Android with concrete
numbers: Sophos for instance reports collecting a total of
650,000 unique Android malware samples, with 2,000 new
samples being discovered every day [27].

Google swiftly reacted to the growing interest of miscreants
in Android: In February 2012 Bouncer [21] was revealed, a
service that transparently checks apps submitted to the Google
Play Store for malware. Google further reported that this service
has led to a decrease of the share of malware in the Play Store

by nearly 40%. However, Android users are not limited to the
official Google Play Store when it comes to installing software.
Apps are available from various sources – these can either be
bulk archives which can be retrieved via torrents or one-click
hosting services, or complete alternative app markets that come
with a dedicated installer and host their own repositories.

Analyzing or detecting Android malware follows the same
basic principle that research on x86 malware relies on. On the
one hand, static analysis yields information immediately by
just looking at a sample’s application package and code, while
dynamic analysis executes the sample in a sandbox and provides
details on its behavior during runtime with the disadvantage of
being slower and more resource intensive. A significant body of
research [9], [17], [32] on Android malware uses these methods,
while none of them provide a comprehensive technical solution
that combines them to obtain a comprehensive feature set for
a sample. However, post-analysis techniques such as clustering
can produce more meaningful results if they are applied to a
rich feature set.

As a consequence, we designed and implemented ANDRUBIS,
an automated analysis solution for Android that records events
on two different levels: Java code executed by the Dalvik Virtual
Machine and native code executed at system level. As some
characteristics are only exposed if they are triggered by specific
interaction with the sample, we also provide targeted stimuli
during the dynamic analysis. To be able to customize the set
of stimuli for each sample we leverage information from prior
static analysis.

As its name already suggests, we built ANDRUBIS as an
extension to the public malware analysis sandbox Anubis [1],
[6]. ANDRUBIS has been operating since June 2012 and has
analyzed over 900,000 unique Android applications so far.
ANDRUBIS achieves a throughput of around 3,500 analyses
per day, with samples coming from market crawls, sample
sharing with other researchers, and submissions through our
web interface or directly from users’ phones.

In summary, we present the following contributions:
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Fig. 1. Architecture of ANDRUBIS.

• We introduce ANDRUBIS, a fully automated analysis
system that includes both static and multi-layered dynamic
approaches to analyze unknown Android applications.

• We implement various stimulation techniques and verify
their effectiveness by computing the resulting code cover-
age.

• We show by clustering our data set that the feature set
produced by ANDRUBIS is rich enough to allow for
researchers to build various post-processing methods upon.

• To provide our solution to the research community, we
opened ANDRUBIS for public submissions under http://
anubis.iseclab.org.

II. SYSTEM DESCRIPTION

ANDRUBIS is based on both static and dynamic analysis
components complementing each other: results of the static
analysis are used to perform more efficient and effective
dynamic analysis. In the following we are going to detail
the building blocks of ANDRUBIS and how they contribute
to building a complete picture of an app’s characteristics.

Figure 1 shows the architecture of ANDRUBIS and how the
individual components relate to one another. During an analysis
run, each app passes through the following stages:

1) Static Analysis: During this phase we extract information
from an app’s manifest and its actual bytecode.

2) Dynamic Analysis: This core phase executes the app
in a complete Android environment, its actions being
monitored at both the Dalvik VM as well as the system
level.

3) Post-Processing: After the main analysis stages have com-
pleted, ANDRUBIS performs additional post-processing on
the result, such as detailed analysis of the captured network
traffic.

A. Static Analysis

Android applications are packaged in Android Application
Package (APK) files that by definition contain a manifest file

(AndroidManifest.xml). This description file is manda-
tory and without its information, the application cannot be
installed or executed. As a first step, we unpack the archive and
parse meta information such as requested permissions, services,
broadcast receivers, activities, package name, and SDK version
from the manifest.

In addition to this we examine the actual bytecode to extract
a complete list of available Java objects and methods. We use
the gathered information to assist in automating the dynamic
analysis as well as identifying permissions, which are dangerous
or commonly used by malware. Furthermore, this gives us an
idea on how many permissions are requested by the app in the
first place, compared to which permissions are actually used
to implement the app’s functionality.

B. Dynamic Analysis

Being designed for smartphones and tablets, Android is
predominantly deployed on ARM-based devices. Since the
underlying architecture should be of no difference to the apps,
we decided to build our sandbox for the ARM platform, as it
is the typical environment for Android. We chose a Qemu-
based emulation environment capable of running arbitrary
Android applications and monitoring behavior that happens
within the operating system. Since Android applications are
based on Java, we closely monitor the underlying VM, called
the Dalvik VM, and record actions happening within this
environment. This allows us to monitor file system as well as
phone events, such as outgoing SMS messages and phone calls.
For a comprehensive analysis, however, these capabilities are
not sufficient. Therefore, our emulator provides the following
additional facilities:

• Tainting: To track privacy sensitive information ANDRU-
BIS uses taint tracking at the Dalvik level [12] which
enables us to detect sensitive information leaving the
phone through taint analysis.

• Method Tracing: We record invoked Java methods, their
parameters and their return values. Combined with our
static analysis, we use method traces to measure the code
covered during an analysis run. This helps us to evaluate
and improve our stimulation engine.

• Emulator Introspection: To provide a means for an anal-
ysis beyond the scope of the Dalvik VM, we implemented
an introspection-based solution at the emulator level. This
enables us to monitor the system from the outside and to
track system calls of potentially harmful native libraries.

The rest of the sandboxing system (host environment, network
setup, database, etc.) is comparable to conservative analysis
systems. To mitigate potentially harmful effects of our analysis
environment, we took precautions to prevent samples from
executing DoS attacks, sending spam e-mails or propagating
themselves over the network. This part is based on our
experience with x86 malware analysis and proved to be effective
in the past [6].
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TABLE I. PERFORMED STIMULATION EVENTS.

Stimulation Event Target

Activities Activities declared in the manifest
Services Services declared in the manifest
Broadcast Receivers Broadcast receivers declared in the manifest and registered

dynamically during runtime
Common Events SMS, WiFi+3G connectivity, GPS lock, phone calls, phone

state changes
Random Events Random input stream by the Application Exerciser Monkey

C. Stimulation

The purpose of stimulation is to exhaustively explore the
functionality provided by a program. One major drawback
of dynamic analysis in general is the fact that only a few
of the possible execution paths are traversed within one
analysis run. Fortunately, the specifics of the Android OS
provide some facilities to alleviate this problem. Since the
application’s manifest defines a list of the various application
components (services, broadcast receivers, and activities), we
can stimulate them individually. Furthermore, we can produce
a set of common events that malware samples are likely to
react to. Thus, our stimulation approach includes the following
sequence of events: After the initialization of the emulator,
ANDRUBIS installs the application under analysis and starts
the main activity. At this point, all predefined entry points are
known from static analysis. Further, ANDRUBIS keeps track of
dynamically registered entry points, enabling it to perform the
stimulation events listed in Table I.

Activities. An activity provides a screen for the user to interact
with. Activities have to be registered in the manifest and
cannot be added programmatically. These activities define the
interaction sequences presented to the user and come with a
defined layout, which must be known in advance. By parsing
the manifest, ANDRUBIS can invoke each activity separately,
effectively iterating all existing dialogs within an application.

Services. Background processes on the Android platform are
usually implemented as services. Other than activities, they
come without a graphical component and are designed to
provide background functionality for a program. Naturally,
they are also of interest to malware authors, as they can
be used to implement communication with botmasters, leak
personal information or forward intercepted text messages to
an adversary. Again, all services used by an application must be
listed in the manifest. Their existence, however, does not auto-
matically mean the service is started under every circumstance.
To save battery life and preserve memory, services have to be
started on demand, with a lifetime defined by the programmer.
For ANDRUBIS we patched the Activity Manager component
to iterate and start all listed services automatically after the
application is deployed.

Broadcast Receivers. Another possibility to enter an Android
app is by utilizing a broadcast receiver. These can be used to
receive events from the system or other applications on the
Android platform. For example, a broadcast receiver for the
BOOT_COMPLETED event can be registered to start an application
after the phone has finished its boot sequence or a broadcast

receiver for the SMS_RECEIVED event can be registered to
intercept incoming SMS messages.

Just like services and activities, they can be registered in the
manifest, although this is not mandatory. In order to provide the
possibility to react to certain events and realize communication
with other applications dynamically, they can be registered
and unregistered at runtime. Therefore, we intercept calls to
registerReceiver() in order to obtain a list of dynamically
registered events that can be triggered. Similar to the previous
stimuli, ANDRUBIS uses the Activity Manager to invoke all
statically registered broadcast receivers found in the manifest
as well as those ones that have been dynamically registered.

Common Events. A far superior method compared to stimu-
lating broadcast receivers with a targeted event is to emulate
some common events samples might react to. In contrast to
directed stimuli, these events occur at the system level and thus
also trigger receivers from the Android OS itself. That, in turn,
avoids causing inconsistent states the OS would have to recover
from. By broadcasting common events such as incoming SMS ,
we are able to trigger most functions even if they propagate data
by custom broadcast receivers. A list of currently implemented
common events can be found in Table I.

Application Exerciser Monkey. The remaining elements that
need to be stimulated are actions based on user input (e.g.,
button clicks, file upload, entry fields, etc.). For this purpose,
we use the Application Exerciser Monkey, which is part
of the Android SDK and generates semi-random user input.
Originally designed for stress-testing Android applications, it
randomly creates a stream of user interaction sequences that
can be restricted to a single package name. While the triggered
interaction sequences include any number of clicks, touches
and gestures, the monkey specifically tries to hit buttons. As
some use cases might require repeatable analysis runs without
any random behavior introduced by the monkey, we can also
provide a fixed seed in order to always trigger the same
interaction sequences.

D. Taint Tracking

Data tainting is a double-edged sword when it comes to
malware analysis. On the one hand, it is the perfect tool to keep
track of interesting data; on the other hand it can be tricked quite
easily if a malware author is aware of this mechanism within
an analysis environment [10]. By leaking data through implicit
flows, for instance, it would be possible to circumvent tainting.
Furthermore, enabling data tainting always comes at the price
of additional overhead to produce and track taint labels. Still,
the possibility to track explicit flows of data sources such as
address book entries to the network is a valuable property of a
dynamic analysis system. ANDRUBIS leverages TaintDroid [12]
to track sensitive information across application borders in the
Android system. The introduced overhead in processing time
of approximately 15% [12] is also acceptable for our purpose.
As a result, ANDRUBIS can log tainted information as it leaves
the system through three sinks: the network, SMS, and files.



TECHNICAL REPORT TR-ISECLAB-0414-001 4

E. Network Analysis

Capturing network traffic is one of the essential parts
when dealing with modern malware – C&C communication is
undoubtedly one of its corner stones. In general, network traffic
is one of the most important features for establishing a malware-
detection metric. According to studies performed in production
environments [16], more than 98% of x86 malware samples
established a TCP/IP connection. Therefore, applications that
neither request network connectivity, nor cause any traffic are
less likely to be malware. Thus, in addition to tracking sensitive
information to network sinks via tainting, we also record all the
network activity during analysis regardless of the performed
action or the application causing it. This is necessary because
even when an app does not request Internet permissions, it
is possible to use other installed apps like the browser, to
still send data over the network. Another possibility not to
request Internet permissions, but still cause network traffic is
by exploiting the Android OS and circumvent the permission
system as a whole. Finally, we extract high-level network
protocol features from the network traffic that are suitable for
identifying interesting samples. Currently, we focus on well-
known protocols such as HTTP, DNS, FTP, SMTP and IRC.

F. Method Tracing

For an extensive analysis of Java-based operations, we
extended the existing Dalvik VM profiler capabilities to in-
corporate a detailed method tracer. For a given app, we dump
executed method names and their corresponding classes, the
object’s this value (if any), all provided parameters and their
types, return values, constructors, exceptions and the current
call depth. For non-primitive types, the tracer looks up and
executes the object’s toString() method, which is then used
to represent the object.

The trace output is separated per process and thread ID and
written to separate log files. Like the output produced by our
system-level analysis (described in the next section), it is not
directly displayed in our web report. As these listings are quite
large, we provide them on an on-demand basis for researchers
and analysts rather than ordinary users.

Together with the output gained from system-level analysis,
the fine-grained method traces can be leveraged for reverse
engineering purposes, as input to machine learning algorithms
or to create behavioral signatures.

We also use the trace output to measure the code covered
during the stimulation phase of ANDRUBIS. To this end we first
construct a list of executed method signatures, which we then
map against the list of functions found during static analysis.
We map functions based on their Java method signature exclud-
ing parameter types and modifiers, i.e., on their <package>.-

<subpackage>.<class>.<method> representation. Finally, we
compute the code covered as the overall percentage of functions
that were called during the dynamic analysis.

Another use for the method trace is the extraction of
used permissions during analysis. By looking up each API
function that was called during analysis in an API-to-permission

mapping such as the one provided by Stowaway [14] or
PScout [5], we can determine the permissions an app used
during runtime.

G. System-Level Analysis

In addition to monitoring the Dalvik VM, ANDRUBIS also
tracks native code execution. By default, Android apps are Java
programs, being distributed as an APK file, which is basically a
JAR container. Hence, the default way of programming for the
Android platform and executing Android apps is by running
Dalvik bytecode within the Dalvik VM. However, Android
apps are not limited to Dalvik bytecode. Via the Java Native
Interface (JNI) it is possible to use native code system-level
libraries. This functionality is mainly intended for performance-
critical use cases such as displaying 3D graphics. But apps are
not limited to load the Android OS’ native libraries; they can
also load their own native libraries and thus execute their own
system-level code. Naturally, such code would not be covered
by a mere observation at the Dalvik VM-level. Most of recent
research on Android malware only deals with the Dalvik VM-
level and would thus miss malicious activity at system level.
However, for malicious apps the use of native code is attractive
as the possibilities to perform malicious activities, including
executing a root exploit, are far greater than within the Dalvik
VM.

There are a couple of ways to implement system-level instru-
mentation in Linux, such as using LD PRELOAD, ptrace or a
loadable kernel module. We decided to use the most transparent
and non-intrusive way – virtual machine introspection (VMI).
With VMI our analysis code is placed outside of the actually
running Android OS, right in the emulator’s codebase. To
capture system-level behavior, we ultimately need to know
what the library code loaded via JNI does. To this end, we
intercept the Android dynamic linker’s actions in order to track
shared object function invocations and monitor all system calls.
System call tracking bundled with this information enables us
to associate system calls with invocations of certain functions
of loaded libraries. The result is a complete list of system calls
performed by the emulator as a whole. In order to identify
only system calls invoked by the app under analysis we use
its UID – in Android a unique UID is assigned to every app.
By filtering the native code events by their corresponding UID,
we can thus only monitor actions caused by a specific app.

Finally system level analysis allows us to monitor the usage
of exploits to gain root privileges. As an example, Figure 2
shows how we can retrace all the steps of the ”rage against the
cage”-exploit (RATC) [4] in our system-level log: RATC first
enumerates running processes to find the PID of the system
daemon adbd. It then spans > 6,000 processes until the Android
OS’ process limit is reached. Finally, it kills adbd, which is
subsequently restarted by the OS and would normally drop its
root privileges via setuid right afterwards. The latter, security-
critical step is, however, prevented by the fact that RATC has
already spawned the maximum number of processes.
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# enumerate processes to find adbd (PID 47)
sys_open,(filename,’/proc/1/cmdline’),(flags,0x20000),(mode,0x0)
sys_read,(fd,0x6),(buf,0xbefaeb18),(count,0xff)
...
sys_open,(filename,’/proc/47/cmdline’),(flags,0x20000),(mode,0x0)
sys_read,(fd,0x6), (buf,0xbefaeb18),(count,0xff)

# fork processes until RLIMIT_NPROC
sys_fork,SystemMonitor: PID: 593 UID: 10044 name: rageagainstthec
...
sys_fork,SystemMonitor: PID: 7241 UID: 10044 name: rageagainsttheca

# kill adbd process (PID 47)
sys_kill,(pid,0x2f),(sig,0x9)

Fig. 2. Excerpt from the system-level log for the rage against the cage exploit.

III. EVALUATION

The primary goal of ANDRUBIS is to provide researchers
with a comprehensive static and dynamic analysis report of
an application, not to automatically identify applications as
goodware or malware. Thus, the evaluation of ANDRUBIS aims
to answer one basic question: Is the system fit to produce
the needed data for malware analysis of Android apps? By
clustering a data set of 27,000 applications from multiple
sources, including known malware, we show that the feature
set produced by ANDRUBIS is rich enough to be integrated
into post-processing methods for an automatic malware clas-
sification. Furthermore, we also evaluate the effectiveness of
the stimulation both in terms of observed behavior and code
coverage, as well as the overall performance overhead of
ANDRUBIS.

A. Clustering

In order to evaluate whether the feature set produced by
ANDRUBIS is indeed rich enough to allow for proper results
using post-analysis techniques, we clustered an evaluation
data set comprised of 27,000 apps from a variety of sources,
including the Google Play Store and known malware corpora
such as the Genome Project [31]. One of the biggest advantages
when dynamically executing apps is the possibility to create
behavioral profiles based on the monitored data in addition to
the wealth of static features that can be extracted from Android
applications. In contrast to other approaches [9], [31], [32],
we use the term behavioral for operations observed while a
sample is executed. While requesting permissions is seen as a
behavioral aspect by the authors, we consider these actions as
static as we can derive them without executing the app. Thus,
a profile with only static components is strictly speaking not a
behavioral profile.

We create a behavioral profile for each application based
on features observed during dynamic analysis as well as
static features extracted from the APK files. The dynamic
behavior includes features such as reading and writing to files,
sending SMS, making phone calls, the use of cryptographic
operations, the dynamic registration of broadcast receivers,
loading DEX classes and native libraries and leaking sensitive
information to files, the network and via SMS. Additionally,

network-related dynamic features are generated by parsing the
captured network dump and extract contacted endpoints, ports
and communication protocols. Static features include activities,
services and broadcast receivers parsed from the manifest as
well as required permissions and statically extracted URLs. We
define the distance between two apps as the Jaccard distance
between their profiles.

To overcome the computational complexity of exact cluster-
ing and process the behavioral profiles of 27,000 applications
within a reasonable amount of time, we utilized the clustering
approach Bayer et al. already applied to the clustering of
Windows malware [7]. This clustering algorithm is based on
locality sensitive hashing (LSH), and provides an efficient
solution to the approximate nearest neighbor problem (ε-NNS).
LSH can be used to perform an approximate clustering while
computing only a small fraction of the n2

2 distances between
pairs of points. Leveraging LSH clustering, we are able to
compute an approximate, single-linkage hierarchical clustering
for our complete data set.

Under the assumption that the extracted feature set is rich
enough, the clusters should expose applications with common
properties. With the already categorized malware from the
Genome Project as well as AV labels from VirusTotal we have
a ground truth that allows us to identify clusters containing
malware and find variants of similar samples from other sources.
It also allows us to identify previously unknown samples when
they are placed in the same cluster due to similarities in
behavior and/or static features. We picked the most interesting
clusters based on dynamic features alone and a combination of
dynamic and static features and provide a short discussion on
their properties in the following two paragraphs.

We first clustered samples using only dynamic features.
The largest resulting clusters were defined by the behavior of
advertisements. Applications that include the same ad library
for displaying advertisements connect to the same server
and therefore feature similar dynamic results. Unsurprisingly,
the largest cluster features apps using AdMob as their ad
library. An interesting side effect of these results is to see the
approximate share of advertisement for each provider. Another
strong characteristic exhibited by large clusters are information
leaks. For one cluster represented by 38 apps 65% of the
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corresponding samples belong to the already classified malware
family DroidKungFu, the remaining 35% stem from the official
app store. The cluster’s determining factor is device ID leakage
over the network. Samples of a comparable cluster of size 23
leak phone number and other database content. 69% of the
correlating samples stem from our malware collections, while
31% can be found in the Play Store.

When combining static features and dynamic behavior to a
more complete profile, the growing amount of features enables
us to watch for larger clusters. With 216 elements, we found a
set of apps that all belong to the BaseBridge malware family.
These samples are primarily distinguished by the large set of
permissions they request, 15 per app on average. All samples
from that cluster belong to one of our malware sets.

Taken as a whole, the combined clustering can be used as
a means to reduce the set of apps that have to be screened
manually. With a reference set, the data provided by both, static
and dynamic analysis elements can be leveraged to deduce a
malware rating scheme or at least provide a reduced list of
suspicious apps to be screened by a human analyst.

B. Stimulation

As an integral part of the analysis environment, we also
evaluated our stimulation engine’s effectiveness. For this pur-
pose, we selected a set of 250 malicious and 250 benign apps.
All benign apps were taken from the official Play Store. The
malware samples are a random selection of AV-labeled samples.
However, in order to select only apps that showed at least some
interesting behavior, we first discarded apps showing no activity
during dynamic analysis.

To better distinguish between programmatically introduced
stimulation events and the GUI-based exerciser monkey, we ran
separate tests with all permutations of these two stimulation
methods. Figure 3 shows the percentage of apps that exhibit
a specific behavior after stimulation. The first bar shows
results when only the main activity of an app is invoked. This
corresponds to a user starting the app. The second bar shows

the result with the exerciser monkey in addition to invoking
the main activity. The third bar shows the results of using our
newly developed stimulator alone. Finally the forth bar puts all
stimulation facilities together, as implemented in ANDRUBIS.

Taking the first category as an example, we see that only 54%
of all apps perform file operations if we trigger the main intent
after installation. With all elements from our stimulation engine,
this percentage increases to 99%. The graph also shows that
different stimulation methods are better suited for some events
than others. Services, for instance, were almost exclusively
triggered by our service iterator, while the exerciser monkey
alone triggered a large portion of SMS activity. As expected,
a combination of all techniques always surpassed behavioral
coverage of a single technique.

The type of analyzed apps also causes differences in
stimulation effectiveness. Games, for instance, are hard to
stimulate with the monkey, while other apps are hard to
activate programmatically. Figure 4 shows a three-minute
analysis run of three different applications. MonkeyJump, a
piece of malware distributed within a game lies dormant during
the monkey phase, while App Manager Pro reacts positively
to this form of stimulation. For NZ Subway & Bus Time
both the programmatic stimulation and the monkey trigger a
considerable amount of events. In conclusion, both GUI-based
and programmatically triggered stimulation are necessary to
achieve the best coverage.

C. Code Coverage

In order to understand the effectiveness of ANDRUBIS and
its stimulation techniques in more detail, we further compute
the obtained code coverage. As described earlier, we use static
analysis to generate a complete function footprint of the target
app. We then map each function invocation from the method
trace output against this footprint and calculate the percentage
of functions called during the individual stimulation phases of
dynamic analysis.
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TABLE II. CODE COVERAGE DURING INDIVIDUAL STIMULATION PHASES.

data set broadcast activities services monkey sum

benign apps 0.79% 21.83% 0.56% 24.81% 27.74%
malicious apps 4.68% 15.14% 7.14% 19.17% 27.80%

Table II lists the average code coverage per stimulation phase
on our subset of 250 malicious and 250 benign applications.
Overall, ANDRUBIS achieved an average code coverage of
around 27.74% on benign applications and 27.80% on malicious
applications. However, apps may contain numerous functions
that, during a normal execution, will never be invoked, such
as localization and in-app settings or large portions of unused
code from third-party ad libraries. Thus, for a less conservative
code coverage computation we could whitelist known third-
party APIs to get a better indication of the number of called
functions that were written by the app authors themselves.

When looking at the coverage results for the individual
stimulation phases, we can see that for both benign and
malicious applications a large portion of the code coverage
comes from activity stimulation and the exerciser monkey.
Furthermore, while the stimulation of broadcast receivers
and services has a negligible effect on benign applications,
it triggers a considerable amount of functions in malicious
applications. This is not surprising, as malware apps tend to
register services and listen to broadcast events in order to
operate without user interaction.

We also analyzed a handful of apps by hand using a custom
system image that enables method tracing. Table III shows
the result for 15 benign apps while Table shows the results
for 15 malicious apps. In general, ANDRUBIS performs better
for malicious applications, surpassing the code covered by
manual analysis for some apps. This is likely caused by external
stimulations, such as a reboot or the receipt of SMS that were
not triggered during manual analysis. Overall, the differences
between manual and automated analysis are below 10% for
both benign and malicious applications. We plan to narrow this
gap even further with a more targeted user interface stimulation
than the random events caused by the exerciser monkey in the
future.

TABLE V. BENCHMARK RESULTS FOR CPU AND I/O PERFORMANCE.

Baseline ANDRUBIS ANDRUBIS
ANDRUBIS Samsung

(Qemu) w/o VMI singlestep I9001

AnTuTu 328 307 277 255 2134
Overhead 0% 7% 18% 29% -

D. Performance

Finally, we measure the performance of ANDRUBIS in
different configurations and compare it to the performance of
real hardware. Table V shows measurements with the AnTuTu
Android benchmark, which we configured to rate CPU and
I/O performance. The baseline for our measurements is the
plain Qemu emulator running a vanilla Android image. Adding
the instrumentation at the Dalvik level causes a negligible
7% overhead, with VMI monitoring the native code raising
it to 18%. For reasons further explained in Section IV we
have also measured the performance with the Qemu single-
step mode enabled. Finally running the benchmark on a real-
world device shows that the overhead additionally introduced by
instrumentation of the Dalvik VM and the emulator is negligible
when comparing the overhead introduced by the emulator alone
with an actual smartphone: The Samsung I9001 is more than
six times faster than the baseline.

IV. LIMITATIONS

Naturally, an automated analysis environment like ANDRU-
BIS comes with some limitations. One of the most severe
problems for any VM-based approach is evasion. Even when
executing x86 virtual machines on an x86 host, the possibility
to detect certain features of the execution environment exists.
Possibilities reach from iterating certain device properties to
reveal the underlying virtualization technology, to querying
for specific pixel colors of the Desktop background in order
to detect a specific analysis system. Previous research has
shown that despite being widespread, analysis evasion is not
ubiquitously implemented in x86 malware [11], [19]. Whether
this assumption holds true for mobile sandboxes is hard to
estimate. In our opinion, the fact that Google introduced a
feature to check third-party apps with Google Bouncer in
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TABLE III. CODE COVERAGE OF ANDRUBIS COMPARED TO MANUAL ANALYSIS (BENIGN APPLICATIONS).

Application Category Manual Calls (of total) ANDRUBIS

com.skylineapps.opentech Business 8.91% 27 of 303 +1.32%
com.lftechs.tictactoe.free Games 34.52% 107 of 310 -4.19%
ynd.tapmadness Games 24.08% 657 of 2728 -3.45%
com.AndPhone.game.Defense Games 31.47% 772 of 2453 -12.27%
com.via3apps.sensacio142 Entertainment 35.24% 160 of 454 -32.38%
com.baste.bender Entertainment 58.14% 125 of 215 -27.91%
com.rpg90.seasons_cn Music & Audio 24.43% 472 of 1932 -5.33%
com.omgbutton Music & Audio 37.70% 184 of 488 -17.83%
com.brightai.middlesboroguide Sports 7.55% 216 of 2860 -0.80%
com.snoffleware.android.rationalcalcfree Productivity 3.89% 166 of 4269 -0.56%
org.steele.david.silentOnOff Productivity 56.83% 79 of 139 -9.35%
com.accesslane.screensaver.shootinggallery.lite Screensaver 41.95% 146 of 348 -16.09%
com.appspot.yongSubway_NZ Travel 100.00% 2 of 2 0.00%
com.hetverkeer.info Travel 47.95% 105 of 219 -12.79%
height.wallfeb28m Wallpapers 20.68% 97 of 469 -0.21%
Average code coverage 35.56% -9.47%

TABLE IV. CODE COVERAGE OF ANDRUBIS COMPARED TO MANUAL ANALYSIS (MALICIOUS APPLICATIONS).

Application AV Label (F-Secure, Kaspersky, Sophos) Manual Calls (of total) ANDRUBIS

com.keji.danti922 BaseBridge.A BaseBrid.a Anserv-A 41.34% 296 of 716 -19.07%
com.software.application Boxer.C FakeInst.a Boxer-D 14.15% 15 of 106 +10.21%
org.zhou.cash.yy DroidKungFu.C KungFu.a KongFu-A 46.80% 476 of 1017 -30.07%
tp5x.WGt12 Fakeinst.L FakeInst.ed Opfake-E 39.77% 35 of 88 -11.05%
org.cahlomi.dmugeiwawbrgt Frogonal.A GinMaster.a Frogonal-A 22.39% 245 of 1094 -18.65%
com.gkiksfsle Frogonal.A GinMaster.a Frogonal-A 10.05% 584 of 5813 -9.16%
org.snakemaxa.apps.app_uninstall Gamex Gamex.a Gamex-Gen 10.31% 234 of 2269 +1.06%
com.bfsx.papertoss Gamex.A Gamex.a Gamex-Gen 22.31% 620 of 2779 -11.71%
com.doidlonghair1 GinMaster.A GinMaster.a Gmaster-A 15.83% 132 of 834 +18.35%
com.load.wap JiFake.F FakeInst.a FkToken-A 52.00% 52 of 100 +9.76%
com.zhenshi.Haidaogame Kituri.A Placms.a Kituri-A 17.10% 85 of 497 -4.30%
com.zs.terence.calendar Kituri.A Placms.a Kituri-A 13.17% 64 of 486 -1.64%
com.gamejing.box Kituri.A Placms.a Kituri-A 8.74% 41 of 469 -6.25%
fhvm.vnnej OpFake.E Opfake.bo Opfake-F 28.30% 30 of 106 +0.94%
ru.mskdev.andrinst SMStado.A FakeInst.a Boxer-D 67.74% 21 of 31 -33.92%
Average code coverage 27.33% -7.03%

Android Version 4.2 [23] is a strong hint that malware writers
will have to put more effort into evading analysis environments.

Additionally, a characteristic intrinsic to the design of
efficient emulators allows a more fundamental detection mech-
anism to be utilized. An emulator usually takes a basic block,
translates it, and executes the whole resulting basic block on
the host machine. Unfortunately, this property allows for an
easy detection of emulated code, since basic blocks cannot be
interrupted by the (guest) operating system’s scheduler. In [22]
the authors leverage this knowledge to detect emulator-based
sandboxes. They also introduce a proof of concept for their
approach, targeting our system. We reacted to this detection
approach by using single-stepping in our analysis.

A general limitation of dynamic analysis systems is the never-
ending arms race between malware developers and security
researchers. As long as a sandbox is not capable of perfectly
emulating a system, a possibility to detect it will always exist.
Therefore, raising the bar for attackers as high as possible is
the only feasible thing to do.

V. RELATED WORK

Research in mobile malware has experienced a tremendous
boom in the last few years. With the appearance of the
first malicious apps, the research community launched various
projects to shed some light on mobile malware.

Felt et al. [13] analyzed a total of 46 iOS, Symbian and
Android malware samples in detail to provide one of the first
surveys on mobile malware and their author’s incentives. Along
with the processed information, the authors provide a list of
dangerous permissions these apps used. Burguera et al. [9] pre-
sented an approach to identify malicious applications that does
not rely on requested permissions but uses syscall information.
The authors use strace to extract vectors reflecting the number
of invocations for each possible syscall from applications. To
detect malware, the authors rely on k-means clustering over
the available vectors. The authors of AdRisk [17] focused on
detecting privacy and security risks in in-app advertisement
libraries. They statically analyzed apps from the Google Play
Store to identify the potential of included ad libraries to leak
private information and execute untrusted code. We can support
this result with our findings presented in Section III. Zhou et
al. [30] analyzed official and third-party markets for repacked
binaries and discovered that 5% to 13% of applications are
repacked versions of existing applications from the original
market. The repacked versions in their evaluation are mainly
used to replace ad libraries and thus re-route ad revenues, but
they also found repacked applications with additional malicious
payloads. While the authors used fuzzy hashing to statically
generate and compare app fingerprints, ANDRUBIS could also
identify the additional malicious behavior during runtime.
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Concerning systems for the large-scale dynamic analysis of
Android applications, the vision paper of Gilbert et al. [15]
was the first to propose a system like ANDRUBIS. With the
only exception of using taint tracking instead of dependency
graphs to determine the source of malicious actions, ANDRUBIS
incorporates every element discussed in this work. For a
thorough analysis, however, we extended the system to also
track JNI invocations on emulator level.

DroidScope [28] is a dynamic analysis system that solely
uses VMI. While this approach has advantages, such as whole-
system taint analysis, the delicate reconstruction of Java objects
and the like from raw memory regions will probably require
a substantial amount of adaption whenever Google pushes an
update.

DroidRanger [32] pre-filters applications based on a manu-
ally created permission-fingerprint before subjecting them to
dynamic analysis. The authors use it to compare 200,000 apps
from different markets. In contrast to this approach, we have
analyzed every app with ANDRUBIS, yielding full behavioral
profiles to base our evaluation on. Furthermore, DroidRanger
performs system-level monitoring through a kernel module
instead of VMI and focuses only on system calls used by
existing Android root exploits. Finally, the dynamic analysis
part of DroidRanger does not employ stimulation techniques.

Regarding stimulation of applications during the analysis,
both SmartDroid [29] and AppsPlayground [24] try to drive
the app along paths that are likely to reveal interesting behavior
through targeted stimulation of GUI elements. Their approaches
can be seen as intelligent enhancements of the existing Ap-
plication Exerciser Monkey and our custom stimulation of
activity screens. They are largely orthogonal to our work, which
also focuses on stimulating broadcast receivers, services and
common events.

Publicly available analysis systems for Android are Bad-
ger [2] and Mobile Sandbox [3], [26]. In contrast to ANDRUBIS,
Badger performs only static code analysis to test for data leaks
and lists permissions as well as identify used ad libraries. The
Mobile Sandbox project is more mature as it claims to perform
dynamic analysis as well. Unfortunately, we were not able to
perform an in-depth comparison, as both systems seem to be
unable to cope with their submission load – our samples are
stuck in the input queues to these systems. We emphasize that
ANDRUBIS’s design allows for large-scale deployments that
can easily handle a big workload.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented ANDRUBIS, a fully automated
large-scale analysis system for Android applications that com-
bines static analysis techniques with dynamic analysis on both
Dalvik VM and system level. The presented results are consis-
tent with previous research and verify the system’s soundness
and effectiveness for analyzing Android apps. Furthermore, we
implemented several stimulation techniques in order to trigger
behavior during the analysis and verified their effectiveness
by evaluating the resulting code coverage. To further enhance

behavioral coverage, we plan to adopt methods similar to the
ones of SmartDroid [29] and AppsPlayground [24].

We opened ANDRUBIS for public submissions with a current
capacity of analyzing around 3,500 samples per day, resulting
in a total of almost 900,000 analyzed apps to date. With
ANDRUBIS, we provide malware analysts with the means to
thoroughly analyze a given Android application. Furthermore,
we provide researchers with a solid platform to build various
post-processing methods upon. For example, machine learning
approaches could use our analysis results to tackle the problem
of judging whether a previously unseen app is malware or not.

Finally, we also provide an Android app to submit samples
directly from a smartphone. It acts as a front-end for ANDRUBIS
and features submission of an installed app to our system and
displaying a summary of our analysis results for the user.
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