An In-Depth Analysis of Disassembly

on Full-Scale x86 /x64 Binaries

Dennis Andriesse’, Xi Chenf, Victor van der Veenf,
Asia Slowinska®, Herbert Bos'

TVrije Universiteit Amsterdam
§Lastline, Inc.

USENIX Security 2016

Introduction

Disassembly in Systems Security

Disassembly is the backbone of all binary-level systems security work
(and more)

e Control-Flow Integrity
e Automatic Vulnerability/Bug Search
e Lifting binaries to LLVM/IR (e.g., for reoptimization)

Malware Analysis

Binary Hardening

Binary Instrumentation

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Introduction

Challenges in Disassembly

Disassembly is undecidable, and disassemblers face many challenges
e Code interleaved with data
e Overlapping basic blocks
e Overlapping instructions (on variable-length ISAs)

Indirect jumps/calls

e Alignment/padding bytes (such as nops)

Multi-entry functions
Tailcalls

How much of a problem do these challenges cause in practice? |

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Introduction

Motivation of our Work
Prior work explores corner cases, but no consensus on how common
these really are in practice

e Pessimistic view of disassembly among reviewers and researchers

e Underestimation of the potential of binary-based work

We study the frequency of corner cases in real-world binaries,
and measure how well disassemblers deal with them

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Experiment Setup

Binary Types

We cover a wide range of commonly targeted binary types (981 tests)
e SPEC CPU2006 + real-world applications (C and C++)
e Compiled with gcc, clang (ELF) and Visual Studio (PE)
e Compiled for x86 and x64
e Five optimization levels (00-03 and Os) + -flto
e Dynamically and statically linked binaries
e Stripped binaries and binaries with symbols

e Library code with handwritten assembly (glibc)

Focus on benign use cases, such as binary protection schemes (we
already know obfuscated binaries can wreak havoc)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Experiment Setup

Ground truth from DWARF/PDB, with source-level LLVM info

Disassembly Primitives and Complex Cases

We study five commonly used disassembly/binary analysis primitives

e (D Instructions, @ Function starts, (3) Function signatures,
@ Control Flow Graph (CFG) accuracy, (6 Callgraph accuracy
Measure prevalence of seven complex cases

e () Overlapping BBs, @ Overlapping instructions,
® Inline data/jump tables, (@ Switches, (5) Padding bytes,
(® Multi-entry functions, (7) Tailcalls

Disassemblers

Tested nine popular industry and research disassemblers (details in
paper and in results where needed)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Experiment Results

Far too many results to fit in this presentation

e Focus on most interesting results here, see paper for more

e Detailed results and ground truth publicly released
https://www.vusec.net/projects/disassembly/

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

https://www.vusec.net/projects/disassembly/

Experiment Results

Instruction Accuracy

Very high accuracy for best performing disassemblers
¢ IDA Pro 6.7: 96%-99% TP (FNs due to padding, FPs rare)

e Linear: 100% correct on ELF (no inline data)
99% correct for PE, some FPs/FNs due to inline jump tables

gce-5.1.1 x86 gee-5.1.1 x64 clang-3.7.0 x86 clang-3.7.0 x64 Visual Studio '15 x86 Visual Studio '15 x64
100 f——ﬁw = ==
= - X L. - z
0 —o R
T80 - - - \ - -
s
3
E
270~ angr 4.6.1.4 - - = D
3 BAP099 O *
E ByteWeight 0.9.9 © hd
8 e~ Dyninst 9.1.0 X - - p N - - - - - N
g yninst 9.1.0
= Hopper 3.11.5
850 - IDAPr067 © - - - - - z - - = _
5 Jakstab 0.8.4 ¥
° A
Linear
R0 - - - - - - - - - - -
SPEC (C) ——
30 - SPEC (C++) = ==| - - - - - - - - - -
20 L I I I I I I I I I I I I | I I I I I I I I I I
o o1 02 03 o o1 02 03 o o1 02 03 o o1 02 03 o o1 02 03 o0 o1 02 03

Figure: Correctly disassembled instructions

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Experiment Results

CFG and Callgraph accuracy

CFG and callgraph very accurate due to high instruction accuracy
(see paper for details)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Experiment Results

Function Signatures

Only IDA Pro, important mostly for manual reverse engineering
e Poor accuracy, especially on x64

e Acceptable for manual analysis, caution in automated analysis

gce-5.1.1 x86 gce-5.1.1 x64 clang-3.7.0 x86 clang-3.7.0 x64 Visual Studio '15 x86 Visual Studio '15 x64

100 — - - - -

% correct (geometric mean)
]
/ ’
h
&
'
i
'
<
v
{
(3
'
i

o0 o1 02 03 00 o1 02 03 00 o1 02 03 o0 o1 02 03 00 o1 02 03 00 o1 02 03

Figure: Correctly detected non-empty argument list (IDA Pro, argc only)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

Experiment Results

Function Detection

Function detection currently the main disassembly challenge
e Even function start detection yields many FPs/FNs (20%-+)
e Complex cases: non-standard prologues, tailcalls, inlining, ...

e Binary analysis commonly requires function information

gcee-5.1.1 x86 gce-5.1.1 x64 clang-3.7.0 x86 clang-3.7.0 x64 Visual Studio '15 x86 Visual Studio '15 x64

angrd6.1.4
BAP099 O
ByleWeight 09.9 ©
40 ~ Dyninst 9.1.0 X
Hopper 3.11.5
IDAPr067 O
Jakstab 0.8.4 K

% correct (geometric mean)

SPEC (C) ——
SPEC (C++) ="~

0L L

o0 01 02 03 o0 o1 02 03 o0 o1 02 03 o0 o1 02 03 o0 o1 02 03 o0 o1 02 03

Figure: Correctly detected function start addresses

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 10 of 18

Experiment Results

Function Detection: False Negative

Listing: False negative indirectly called function for IDA Pro 6.7 (gcc

compiled with gcc at 03 for x64 ELF)

6caf10 <

6cafl10:
6cafl6:
6cafl19:
6caflc:
6cafle:
6caf21:

ix86_fp_compare_mode>:

mov 0x3f0Odde (%rip),%eax
and $0x10,%eax

cmp $0x1,%eax

sbb Yeax,%eax

add $0x3a,%eax

retq

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

11 of 18

Experiment Results

Function Detection: False Positive

Listing: False positive function (shaded) for Dyninst (perlbench
compiled with gcc at 03 for x64 ELF)

46b990 <Perl_pp_enterloop>:

[...]

46bal2: ja 46bb50 <Perl_pp_enterloop+0x1c0>

46ba08: mov Y%rsi,f%rdi

46bal0b: shl %cl,%rdi

46bale: mov %rdi,%hrcx

46ball: and $0x46, hecx

46bal4d: je 46bb50 <Perl_pp_enterloop+0x1c0>
[...]

46bb47: pop hri2

46bb49: retq

46bb4a: nopw 0x0 (%rax,¥%rax,1)

46bb50: sub $0x90, Yirax

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries

12 of 18

Prevalence of Complex Cases

Complex Cases in Application Code

¢ No inline data in ELF, even jump tables placed in .rodata
e Inline data for PE (jump tables), well recognized by IDA Pro
e No overlapping basic blocks, contrary to widespread belief

e Tailcalls quite common (impact on function detection)

gee-5.1.1 x86 gce-5.1.1 x64 clang-3.7.0 x86 clang-3.7.0 x64 Visual Studio 15 x86 Visual Studio '15 x64

600 — - - - -

BB overlap
insoverlap &
500 —| multi-entry jmps X -
mult-entry targets
taileall jmps O
tailcall targets <

8

SPEC (C) ——
SPEC (C++) ="~

complex cases (geometric mean)
|
i
| |

100 = g RN s =4

Q :;& o ;

i = = N Zown
[o]i] o1 02 03

Figure: Prevalence of complex constructs in SPEC CPU2006 binaries

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 13 of 18

Prevalence of Complex Cases

Complex Cases in Library Code (glibc-2.22)

Highly optimized library code (handwritten assembly) allows for more
complex cases

e Surprisingly, no inline data in recent glibc versions (explicitly
pushed into .rodata even in handwritten code)

¢ No overlapping basic blocks

Tailcalls again quite common
e Some overlapping instructions (handwritten assembly)

e Some multi-entry functions (well-defined)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 14 of 18

Prevalence of Complex Cases

Complex Cases in Library Code: Overlapping Instruction
Listing: Overlapping instruction in glibc-2.22

7b05a: cmpl $0x0,%fs:0x18
7b063: je 7b066
7b065: lock cmpxchg J%rcx,0x3230fa(Y%rip)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 15 of 18

Prevalence of Complex Cases
Complex Cases in Library Code: Multi-Entry Function

Listing: Multi-entry function in glibc-2.22

e9a30 <splice>:
e9a30: cmpl $0x0,0x2b9da9 (%rip)

e9a37: jne eYadc <__splice nocancel+0x13>
e9a39 <__splice_nocancel>:
e9a39: mov Y%rcx,hr10

e9a3c: mov $0x113, %eax

e9a4l: syscall

e9a43: cmp $OxffEEFELEEFEFE001, Yrax

efad9: jae e9a7f <__splice nocancel+0x46>
e%9adb: retq

e9adc: sub $0x8, Jirsp

e9ab0: callgq £56d0 <__libc_enable_asynccancel>
[...]

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 16 of 18

Disassembly in the Literature
Comparison of Results

Compared our results to the requirements and expectations of
disassembly-based security work published between 2013-2015

e Instructions/CFG information needed in nearly all papers
e Function detection required by half of the papers
e Linear disassembly rarely used, even when more accurate (ELF)

e Only 30% of papers that use function detection discuss
potential errors, despite its unreliability

e Errors in function detection are discussed less often than
for any other primitive

e In 70% of papers, errors are fatal (unusable results or crashes)
e Only 43% of papers handle errors in any primitive

e Most papers that handle errors use overestimation (conservative
analysis) or runtime fixes

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 17 of 18

Discussion and Conclusion

Expectations of disassembly are mismatched with actual results
e Research focuses on extremely rare or nonexistent corner cases

e Function detection currently biggest challenge, but errors
discussed more rarely than any other primitive
e Few papers implement mechanisms for handling disassembly
errors, even when these are fatal
Real-world data on disassembly enables better judgement of directions
for future work

e Many more results and details given in our paper

e Detailed results and ground truth publicly released
https://www.vusec.net/projects/disassembly/

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 18 of 18

https://www.vusec.net/projects/disassembly/

