
An In-Depth Analysis of Disassembly
on Full-Scale x86/x64 Binaries

Dennis Andriesse†, Xi Chen†, Victor van der Veen†,
Asia Slowinska§, Herbert Bos†

†Vrije Universiteit Amsterdam
§Lastline, Inc.

USENIX Security 2016

Introduction

Disassembly in Systems Security

Disassembly is the backbone of all binary-level systems security work
(and more)

• Control-Flow Integrity

• Automatic Vulnerability/Bug Search

• Lifting binaries to LLVM/IR (e.g., for reoptimization)

• Malware Analysis

• Binary Hardening

• Binary Instrumentation

• . . .

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 1 of 18

Introduction

Challenges in Disassembly

Disassembly is undecidable, and disassemblers face many challenges

• Code interleaved with data

• Overlapping basic blocks

• Overlapping instructions (on variable-length ISAs)

• Indirect jumps/calls

• Alignment/padding bytes (such as nops)

• Multi-entry functions

• Tailcalls

• . . .

How much of a problem do these challenges cause in practice?

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 2 of 18

Introduction

Motivation of our Work

Prior work explores corner cases, but no consensus on how common
these really are in practice

• Pessimistic view of disassembly among reviewers and researchers

• Underestimation of the potential of binary-based work

We study the frequency of corner cases in real-world binaries,
and measure how well disassemblers deal with them

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 3 of 18

Experiment Setup

Binary Types

We cover a wide range of commonly targeted binary types (981 tests)

• SPEC CPU2006 + real-world applications (C and C++)

• Compiled with gcc, clang (ELF) and Visual Studio (PE)

• Compiled for x86 and x64

• Five optimization levels (O0-O3 and Os) + -flto

• Dynamically and statically linked binaries

• Stripped binaries and binaries with symbols

• Library code with handwritten assembly (glibc)

Focus on benign use cases, such as binary protection schemes (we
already know obfuscated binaries can wreak havoc)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 4 of 18

Experiment Setup

Ground Truth

Ground truth from DWARF/PDB, with source-level LLVM info

Disassembly Primitives and Complex Cases

We study five commonly used disassembly/binary analysis primitives

• 1© Instructions, 2© Function starts, 3© Function signatures,
4© Control Flow Graph (CFG) accuracy, 5© Callgraph accuracy

Measure prevalence of seven complex cases

• 1© Overlapping BBs, 2© Overlapping instructions,
3© Inline data/jump tables, 4© Switches, 5© Padding bytes,
6© Multi-entry functions, 7© Tailcalls

Disassemblers

Tested nine popular industry and research disassemblers (details in
paper and in results where needed)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 5 of 18

Experiment Results

More results

Far too many results to fit in this presentation

• Focus on most interesting results here, see paper for more

• Detailed results and ground truth publicly released
https://www.vusec.net/projects/disassembly/

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 6 of 18

https://www.vusec.net/projects/disassembly/

Experiment Results

Instruction Accuracy

Very high accuracy for best performing disassemblers

• IDA Pro 6.7: 96%–99% TP (FNs due to padding, FPs rare)

• Linear: 100% correct on ELF (no inline data)
99% correct for PE, some FPs/FNs due to inline jump tables

 20

 30

 40

 50

 60

 70

 80

 90

 100

O0 O1 O2 O3

%
 c

or
re

ct
 (g

eo
m

et
ric

 m
ea

n)

gcc-5.1.1 x86

angr 4.6.1.4
BAP 0.9.9

ByteWeight 0.9.9
Dyninst 9.1.0

Hopper 3.11.5
IDA Pro 6.7

Jakstab 0.8.4
Linear

SPEC (C)
SPEC (C++)

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure: Correctly disassembled instructions

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 7 of 18

Experiment Results

CFG and Callgraph accuracy

CFG and callgraph very accurate due to high instruction accuracy
(see paper for details)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 8 of 18

Experiment Results

Function Signatures

Only IDA Pro, important mostly for manual reverse engineering

• Poor accuracy, especially on x64

• Acceptable for manual analysis, caution in automated analysis

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 c

or
re

ct
 (g

eo
m

et
ric

 m
ea

n)

gcc-5.1.1 x86

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure: Correctly detected non-empty argument list (IDA Pro, argc only)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 9 of 18

Experiment Results

Function Detection

Function detection currently the main disassembly challenge

• Even function start detection yields many FPs/FNs (20%+)

• Complex cases: non-standard prologues, tailcalls, inlining, . . .

• Binary analysis commonly requires function information

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3

%
 c

or
re

ct
 (g

eo
m

et
ric

 m
ea

n)

gcc-5.1.1 x86

angr 4.6.1.4
BAP 0.9.9

ByteWeight 0.9.9
Dyninst 9.1.0

Hopper 3.11.5
IDA Pro 6.7

Jakstab 0.8.4

SPEC (C)
SPEC (C++)

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure: Correctly detected function start addresses
An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 10 of 18

Experiment Results

Function Detection: False Negative

Listing: False negative indirectly called function for IDA Pro 6.7 (gcc
compiled with gcc at O3 for x64 ELF)

6caf10 <ix86 fp compare mode>:

6caf10: mov 0x3f0dde(%rip),%eax

6caf16: and $0x10,%eax

6caf19: cmp $0x1,%eax

6caf1c: sbb %eax,%eax

6caf1e: add $0x3a,%eax

6caf21: retq

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 11 of 18

Experiment Results

Function Detection: False Positive

Listing: False positive function (shaded) for Dyninst (perlbench
compiled with gcc at O3 for x64 ELF)

46b990 <Perl pp enterloop>:

[...]

46ba02: ja 46bb50 <Perl pp enterloop+0x1c0>

46ba08: mov %rsi,%rdi

46ba0b: shl %cl,%rdi

46ba0e: mov %rdi,%rcx

46ba11: and $0x46,%ecx

46ba14: je 46bb50 <Perl pp enterloop+0x1c0>

[...]

46bb47: pop %r12

46bb49: retq

46bb4a: nopw 0x0(%rax,%rax,1)

46bb50: sub $0x90,%rax

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 12 of 18

Prevalence of Complex Cases

Complex Cases in Application Code

• No inline data in ELF, even jump tables placed in .rodata

• Inline data for PE (jump tables), well recognized by IDA Pro

• No overlapping basic blocks, contrary to widespread belief

• Tailcalls quite common (impact on function detection)

 0

 100

 200

 300

 400

 500

 600

O0 O1 O2 O3

co

m
pl

ex
 c

as
es

 (g
eo

m
et

ric
 m

ea
n)

gcc-5.1.1 x86

BB overlap
ins overlap

multi-entry jmps
multi-entry targets

tailcall jmps
tailcall targets

SPEC (C)
SPEC (C++)

O0 O1 O2 O3

gcc-5.1.1 x64

O0 O1 O2 O3

clang-3.7.0 x86

O0 O1 O2 O3

clang-3.7.0 x64

O0 O1 O2 O3

Visual Studio '15 x86

O0 O1 O2 O3

Visual Studio '15 x64

Figure: Prevalence of complex constructs in SPEC CPU2006 binaries
An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 13 of 18

Prevalence of Complex Cases

Complex Cases in Library Code (glibc-2.22)

Highly optimized library code (handwritten assembly) allows for more
complex cases

• Surprisingly, no inline data in recent glibc versions (explicitly
pushed into .rodata even in handwritten code)

• No overlapping basic blocks

• Tailcalls again quite common

• Some overlapping instructions (handwritten assembly)

• Some multi-entry functions (well-defined)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 14 of 18

Prevalence of Complex Cases

Complex Cases in Library Code: Overlapping Instruction

Listing: Overlapping instruction in glibc-2.22

7b05a: cmpl $0x0,%fs:0x18

7b063: je 7b066

7b065: lock cmpxchg %rcx,0x3230fa(%rip)

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 15 of 18

Prevalence of Complex Cases

Complex Cases in Library Code: Multi-Entry Function

Listing: Multi-entry function in glibc-2.22

e9a30 <splice>:

e9a30: cmpl $0x0,0x2b9da9(%rip)

e9a37: jne e9a4c < splice nocancel+0x13>

e9a39 < splice nocancel>:

e9a39: mov %rcx,%r10

e9a3c: mov $0x113,%eax

e9a41: syscall

e9a43: cmp $0xfffffffffffff001,%rax

e9a49: jae e9a7f < splice nocancel+0x46>

e9a4b: retq

e9a4c: sub $0x8,%rsp

e9a50: callq f56d0 < libc enable asynccancel>

[...]

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 16 of 18

Disassembly in the Literature

Comparison of Results

Compared our results to the requirements and expectations of
disassembly-based security work published between 2013–2015

• Instructions/CFG information needed in nearly all papers

• Function detection required by half of the papers

• Linear disassembly rarely used, even when more accurate (ELF)

• Only 30% of papers that use function detection discuss
potential errors, despite its unreliability

• Errors in function detection are discussed less often than
for any other primitive

• In 70% of papers, errors are fatal (unusable results or crashes)

• Only 43% of papers handle errors in any primitive

• Most papers that handle errors use overestimation (conservative
analysis) or runtime fixes

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 17 of 18

Discussion and Conclusion

Expectations of disassembly are mismatched with actual results

• Research focuses on extremely rare or nonexistent corner cases

• Function detection currently biggest challenge, but errors
discussed more rarely than any other primitive

• Few papers implement mechanisms for handling disassembly
errors, even when these are fatal

Real-world data on disassembly enables better judgement of directions
for future work

• Many more results and details given in our paper

• Detailed results and ground truth publicly released
https://www.vusec.net/projects/disassembly/

An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 18 of 18

https://www.vusec.net/projects/disassembly/

