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Introduction

Disassembly in Systems Security

Disassembly is the backbone of all binary-level systems security work
(and more)

• Control-Flow Integrity

• Automatic Vulnerability/Bug Search

• Lifting binaries to LLVM/IR (e.g., for reoptimization)

• Malware Analysis

• Binary Hardening

• Binary Instrumentation

• . . .
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Introduction

Challenges in Disassembly

Disassembly is undecidable, and disassemblers face many challenges

• Code interleaved with data

• Overlapping basic blocks

• Overlapping instructions (on variable-length ISAs)

• Indirect jumps/calls

• Alignment/padding bytes (such as nops)

• Multi-entry functions

• Tailcalls

• . . .

How much of a problem do these challenges cause in practice?
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Introduction

Motivation of our Work

Prior work explores corner cases, but no consensus on how common
these really are in practice

• Pessimistic view of disassembly among reviewers and researchers

• Underestimation of the potential of binary-based work

We study the frequency of corner cases in real-world binaries,
and measure how well disassemblers deal with them
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Experiment Setup

Binary Types

We cover a wide range of commonly targeted binary types (981 tests)

• SPEC CPU2006 + real-world applications (C and C++)

• Compiled with gcc, clang (ELF) and Visual Studio (PE)

• Compiled for x86 and x64

• Five optimization levels (O0-O3 and Os) + -flto

• Dynamically and statically linked binaries

• Stripped binaries and binaries with symbols

• Library code with handwritten assembly (glibc)

Focus on benign use cases, such as binary protection schemes (we
already know obfuscated binaries can wreak havoc)
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Experiment Setup

Ground Truth

Ground truth from DWARF/PDB, with source-level LLVM info

Disassembly Primitives and Complex Cases

We study five commonly used disassembly/binary analysis primitives

• 1© Instructions, 2© Function starts, 3© Function signatures,
4© Control Flow Graph (CFG) accuracy, 5© Callgraph accuracy

Measure prevalence of seven complex cases

• 1© Overlapping BBs, 2© Overlapping instructions,
3© Inline data/jump tables, 4© Switches, 5© Padding bytes,
6© Multi-entry functions, 7© Tailcalls

Disassemblers

Tested nine popular industry and research disassemblers (details in
paper and in results where needed)
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Experiment Results

More results

Far too many results to fit in this presentation

• Focus on most interesting results here, see paper for more

• Detailed results and ground truth publicly released
https://www.vusec.net/projects/disassembly/
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Experiment Results

Instruction Accuracy

Very high accuracy for best performing disassemblers

• IDA Pro 6.7: 96%–99% TP (FNs due to padding, FPs rare)

• Linear: 100% correct on ELF (no inline data)
99% correct for PE, some FPs/FNs due to inline jump tables
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Figure: Correctly disassembled instructions
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Experiment Results

CFG and Callgraph accuracy

CFG and callgraph very accurate due to high instruction accuracy
(see paper for details)
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Experiment Results

Function Signatures

Only IDA Pro, important mostly for manual reverse engineering

• Poor accuracy, especially on x64

• Acceptable for manual analysis, caution in automated analysis
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Figure: Correctly detected non-empty argument list (IDA Pro, argc only)
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Experiment Results

Function Detection

Function detection currently the main disassembly challenge

• Even function start detection yields many FPs/FNs (20%+)

• Complex cases: non-standard prologues, tailcalls, inlining, . . .

• Binary analysis commonly requires function information
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Figure: Correctly detected function start addresses
An In-Depth Analysis of Disassembly,on Full-Scale x86/x64 Binaries 10 of 18



Experiment Results

Function Detection: False Negative

Listing: False negative indirectly called function for IDA Pro 6.7 (gcc
compiled with gcc at O3 for x64 ELF)

6caf10 <ix86 fp compare mode>:

6caf10: mov 0x3f0dde(%rip),%eax

6caf16: and $0x10,%eax

6caf19: cmp $0x1,%eax

6caf1c: sbb %eax,%eax

6caf1e: add $0x3a,%eax

6caf21: retq
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Experiment Results

Function Detection: False Positive

Listing: False positive function (shaded) for Dyninst (perlbench
compiled with gcc at O3 for x64 ELF)

46b990 <Perl pp enterloop>:

[...]

46ba02: ja 46bb50 <Perl pp enterloop+0x1c0>

46ba08: mov %rsi,%rdi

46ba0b: shl %cl,%rdi

46ba0e: mov %rdi,%rcx

46ba11: and $0x46,%ecx

46ba14: je 46bb50 <Perl pp enterloop+0x1c0>

[...]

46bb47: pop %r12

46bb49: retq

46bb4a: nopw 0x0(%rax,%rax,1)

46bb50: sub $0x90,%rax
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Prevalence of Complex Cases

Complex Cases in Application Code

• No inline data in ELF, even jump tables placed in .rodata

• Inline data for PE (jump tables), well recognized by IDA Pro

• No overlapping basic blocks, contrary to widespread belief

• Tailcalls quite common (impact on function detection)

 0

 100

 200

 300

 400

 500

 600

O0 O1 O2 O3

# 
co

m
pl

ex
 c

as
es

 (g
eo

m
et

ric
 m

ea
n)

gcc-5.1.1 x86

BB overlap
ins overlap

multi-entry jmps
multi-entry targets

tailcall jmps
tailcall targets

SPEC (C)
SPEC (C++)

 

 

 

 

 

 

 

O0 O1 O2 O3

gcc-5.1.1 x64

 

 

 

 

 

 

 

O0 O1 O2 O3

clang-3.7.0 x86

 

 

 

 

 

 

 

O0 O1 O2 O3

clang-3.7.0 x64

 

 

 

 

 

 

 

O0 O1 O2 O3

Visual Studio '15 x86

 

 

 

 

 

 

 

O0 O1 O2 O3

Visual Studio '15 x64

Figure: Prevalence of complex constructs in SPEC CPU2006 binaries
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Prevalence of Complex Cases

Complex Cases in Library Code (glibc-2.22)

Highly optimized library code (handwritten assembly) allows for more
complex cases

• Surprisingly, no inline data in recent glibc versions (explicitly
pushed into .rodata even in handwritten code)

• No overlapping basic blocks

• Tailcalls again quite common

• Some overlapping instructions (handwritten assembly)

• Some multi-entry functions (well-defined)
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Prevalence of Complex Cases

Complex Cases in Library Code: Overlapping Instruction

Listing: Overlapping instruction in glibc-2.22

7b05a: cmpl $0x0,%fs:0x18

7b063: je 7b066

7b065: lock cmpxchg %rcx,0x3230fa(%rip)
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Prevalence of Complex Cases

Complex Cases in Library Code: Multi-Entry Function

Listing: Multi-entry function in glibc-2.22

e9a30 <splice>:

e9a30: cmpl $0x0,0x2b9da9(%rip)

e9a37: jne e9a4c < splice nocancel+0x13>

e9a39 < splice nocancel>:

e9a39: mov %rcx,%r10

e9a3c: mov $0x113,%eax

e9a41: syscall

e9a43: cmp $0xfffffffffffff001,%rax

e9a49: jae e9a7f < splice nocancel+0x46>

e9a4b: retq

e9a4c: sub $0x8,%rsp

e9a50: callq f56d0 < libc enable asynccancel>

[...]
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Disassembly in the Literature

Comparison of Results

Compared our results to the requirements and expectations of
disassembly-based security work published between 2013–2015

• Instructions/CFG information needed in nearly all papers

• Function detection required by half of the papers

• Linear disassembly rarely used, even when more accurate (ELF)

• Only 30% of papers that use function detection discuss
potential errors, despite its unreliability

• Errors in function detection are discussed less often than
for any other primitive

• In 70% of papers, errors are fatal (unusable results or crashes)

• Only 43% of papers handle errors in any primitive

• Most papers that handle errors use overestimation (conservative
analysis) or runtime fixes
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Discussion and Conclusion

Expectations of disassembly are mismatched with actual results

• Research focuses on extremely rare or nonexistent corner cases

• Function detection currently biggest challenge, but errors
discussed more rarely than any other primitive

• Few papers implement mechanisms for handling disassembly
errors, even when these are fatal

Real-world data on disassembly enables better judgement of directions
for future work

• Many more results and details given in our paper

• Detailed results and ground truth publicly released
https://www.vusec.net/projects/disassembly/
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